Tracking floating marine litter in the coastal area by combining operational ocean modelling and remote observation systems.

Author(s):  
Matthias Delpey ◽  
Amandine Declerck ◽  
Irati Epelde ◽  
Thibaut Voirand ◽  
Ivan Manso-Navarte ◽  
...  

<p>Keywords: marine litter; coastal ocean modeling; video monitoring; satellite observation; Bay of Biscay</p><p>The service “Floating Marine Litter Tracking”, or “FML-TRACK” is a downstream service from Copernicus Marine Service, aiming at providing an operational support to reduce Floating Marine Litter (FML) in the coastal area. More precisely, FML-TRACK aims at supporting FML reduction strategies both downstream (interception at sea with collect vessels and on beaches with cleaning facilities) and upstream (source identification and reduction), by tracking the dispersion of FML in estuaries and in the coastal ocean. Using a combination of innovative detection technologies and operational metocean modelling, the service produces tailored decision-aid indicators to monitor and guide FML collect operations, including day-to-day operation support in near real time. Guidance offered by these indicators help maximizing the amount of FML removed from the natural environment, while at the same time contributing to reduce the cost and impacts of operations (i.e. cost per kilogram of collected FML, fuel consumption, carbon footprint). Moreover, tracking technologies contribute to the reduction of FML emission at the source, by helping identifying most probable emission sectors depending on metocean conditions.</p><p>To achieve these purposes, FML-TRACK combines innovative detection solutions based on video monitoring in rivers and satellite imagery in the coastal area, together with metocean-based FML transport modelling. In the operational mode of the service, it provides a decision-aid dashboard supporting day-to-day FML collect operations. The dashboard offers indicators aiming at guiding FML collect operations, to monitor and optimize their efficiency. It especially provides a tracking of FML in the coastal area and a prediction of concentration hotspots to guide collect vessel at sea; and anticipate massive onshore arrivals to help beach cleaning at land.</p><p>The service was demonstrated in the coastal area of the South-Eastern Bay of Biscay, part of the Iberian-Biscay-Ireland regional seas. It took benefit of pre-existing components developed during the former LIFE LEMA program, which were further improved and complemented to bring the tool and service to a new stage, compatible with a realistic application in an operational context.</p><p>Main end-users of the service are coastal public administrations involved in the reduction of FML in their region. End-users can also be private companies operating sea or beach cleaning. Fishermen who can be involved in FML collect effort (actively or passively) may also use the service as a support to operations and/or to participate in the monitoring program. Finally, the service may also be of interest for NGOs and scientists committed to the study of and fight against FML, through either participation to the monitoring and/or use of the database for science, awareness and education.</p>

2019 ◽  
Vol 12 (sup2) ◽  
pp. S111-S125 ◽  
Author(s):  
Amandine Declerck ◽  
M. Delpey ◽  
A. Rubio ◽  
L. Ferrer ◽  
O. C. Basurko ◽  
...  

2021 ◽  
Author(s):  
Katerina Spanoudaki ◽  
George Zodiatis ◽  
Nikos Kampanis ◽  
Maria Luisa Quarta ◽  
Marco Folegani ◽  
...  

<p>The coastal area of Crete is an area of increasing interest due to the recent hydrocarbon exploration and exploitation activities in the Eastern Mediterranean Sea and the increase of the maritime transport after the enlargement of the Suez Canal. National and local authorities, like ports and the coast guard, who are involved in maritime safety, such as oil spill prevention, the tourism industry and policy makers involved in coastal zone management, are key end users’ groups who can benefit from high spatial and temporal resolution forecasting products and information to support their maritime activities in the coastal sea area of the island. To support local end users and response agencies to strengthen their capacities in maritime safety and marine conservation, a high-resolution, operational forecasting system, has been developed for the coastal area of Crete. The COASTAL CRETE forecasting system implements advanced numerical hydrodynamic and sea state models, nested in CMEMS Med MFC products and produces, on a daily basis, 5-day hourly and 6-hourly averaged high-resolution forecasts of important marine parameters, such as sea currents, temperature, salinity and waves. The COASTAL CRETE high-resolution (~ 1km) hydrodynamic model is based on a modified POM parallel code implemented by CYCOFOS in the Eastern Mediterranean and the Levantine Basin, while for wave forecasts, the latest ECMWF CY46R1 parallel version including a number of new features, a state-of-the-art wave analysis and prediction model, with high accuracy in both shallow and deep waters has been implemented with a resolution of ~1.8 km. The COASTAL CRETE hydrodynamic model has been evaluated against the CMEMS Med MFC model and with satellite Sea Surface Temperature data with good statistical estimates. The COASTAL CRETE wave model is calibrated with in-situ data provided from the HCMR buoy network operating in the area. Both the CMEMS Med MFC products and COASTAL CRETE forecasts are made available through a customized instance of ADAM (Advanced geospatial Data Management platform) developed by MEEO S.r.l. (https://explorer-coastal-crete.adamplatform.eu/). This application provides automatic data exchange management capabilities between the CMEMS Med MFC and the COASTAL CRETE models, enabling data visualization, combination, processing and download through the implementation of the Digital Earth concept. Among the numerous functionalities of the platform, a depth slider allows to explore the COASTAL CRETE products through the depth dimension, and a sea current magnitude feature enables the visualization of the currents vectors by overlaying them to any available product/parameter, thus allowing comparisons and correlations. The downscaled high-resolution COASTAL CRETE forecasts will be used to deliver on demand information and services in the broader objectives of the maritime safety, particularly for oil spill and floating objects/marine litters predictions. Such a use case is presented for the port area of Heraklion, implementing nested fine grid hydrodynamic and oil spill models (MEDSLIK-II).</p><p>Acknowledgement: Copernicus Marine Environment Monitoring Service (CMEMS) DEMONSTRATION COASTAL-MED SEA. COASTAL-CRETE, Contract: 110-DEM5-L3.</p>


2021 ◽  
Vol 343 ◽  
pp. 07008
Author(s):  
Georgiana Grigoras ◽  
Ionuţ Cristian Mihalache ◽  
Eduard Edelhauser

Coastal erosion contributes to the loss of particularly valuable land, which can damage coastal ecosystems and cause economic and social damage to the area where they occur. Coastal erosion is a natural process that affects shores around the world. The article present aspects of coastal erosion in Romania as well as some solutions proposed to reduce this phenomenon. Submerged structures are exposed to erosion therefore a close monitoring is necessary. A malfunction will result in the damage of the structure as well as endangering marine wildlife. The proposed solutions are meant to protect the coastal area against erosion, protecting the shore, adjacent land and ecosystems. These solutions will also protect the economic infrastructure and social objectives endangered by marine erosion. A monitoring program will be implemented for a medium and long term, supporting the maintenance operations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sharif Jemaa ◽  
Celine Mahfouz ◽  
Maria Kazour ◽  
Myriam Lteif ◽  
Abed El Rahman Hassoun ◽  
...  

Despite emerging and increasing concerns related to marine micro and macroplastics, no systematic surveys have been undertaken yet in the Lebanese marine area. To understand the spatio-temporal variation of plastic litter (macro and microplastics) in the Lebanese marine environment and to determine the sources of pollution, this study investigated the characteristics of plastic pollution in sea surface waters during wet and dry seasons in 22 sites of Beirut and Tyre regions. A total of 23,023 items were identified and assessed according to the shape, color, and concentration; moreover, the risk of microplastics (MPs) contamination was explored based on a risk assessment model. The obtained results demonstrated that the average macroplastics concentration was 0.45 ± 0.6 items/m3. The average microplastics concentration was found to be 20.1 ± 21.8 and 3.78 ± 5.2 items/m3 in spring and fall respectively. During fall, MPs fragments were dominant in Beirut (97%) and Tyre (91%), and no pellets were observed. During spring, filaments were most encountered in Beirut (76.5%). The most dominant marine litter color was blue followed by black and white. The Pollution Load Index (PLI) values showed a moderate contamination of the Lebanese coast with MPs (PLI: 5.79 ± 3.93) except for several sites in Beirut that showed high values of PLI, highlighting the local influence of cities and rivers on MPs concentration. This study serves as an important baseline for understanding the characteristics of the seasonal variation of MPs along the Lebanese marine environment; it will help stakeholders and countries to take proactive and reactive actions to face plastic litter pollution in the Lebanese coastal area.


2016 ◽  
Vol 66 (4) ◽  
pp. 567-588 ◽  
Author(s):  
Julien Lamouroux ◽  
Guillaume Charria ◽  
Pierre De Mey ◽  
Stéphane Raynaud ◽  
Catherine Heyraud ◽  
...  

2020 ◽  
Vol 8 (8) ◽  
pp. 612
Author(s):  
Charles Reid Nichols ◽  
Lynn Donelson Wright

Beginning in 2003, the Southeastern Universities Research Association (SURA) enabled an open-access network of distributed sensors and linked computer models through the SURA Coastal Ocean Observing and Predicting (SCOOP) program. The goal was to support collaborations among universities, government, and industry to advance integrated observation and modeling systems. SCOOP improved the path to operational real-time data-guided predictions and forecasts of coastal ocean processes. This was critical to the maritime infrastructure of the U.S. and to the well-being of coastal communities. SCOOP integrated and expanded observations from the Gulf of Mexico, the South Atlantic Bight, the Middle Atlantic Bight, and the Chesapeake Bay. From these successes, a Coastal and Ocean Modeling Testbed (COMT) evolved with National Oceanic and Atmospheric Administration (NOAA) funding via the Integrated Ocean Observing System (IOOS) to facilitate the transition of key models from research to operations. Since 2010, COMT has been a conduit between the research community and the federal government for sharing and improving models and software tools. SCOOP and COMT have been based on strong partnerships among universities and U.S. agencies that have missions in ocean and coastal environmental prediction. During SURA’s COMT project, which ended September 2018, significant progress was made in evaluating the performance of models that are progressively becoming operational. COMT successes are ongoing.


Author(s):  
Z S M Odli ◽  
A L Abdullah ◽  
F N M Saad ◽  
N S A Fadzillah

2019 ◽  
Vol 12 (5) ◽  
pp. 1847-1868 ◽  
Author(s):  
Keith J. Roberts ◽  
William J. Pringle ◽  
Joannes J. Westerink

Abstract. OceanMesh2D is a set of MATLAB functions with preprocessing and post-processing utilities to generate two-dimensional (2-D) unstructured meshes for coastal ocean circulation models. Mesh resolution is controlled according to a variety of feature-driven geometric and topo-bathymetric functions. Mesh generation is achieved through a force balance algorithm to locate vertices and a number of topological improvement strategies aimed at improving the worst-case triangle quality. The placement of vertices along the mesh boundary is adapted automatically according to the mesh size function, eliminating the need for contour simplification algorithms. The software expresses the mesh design and generation process via an objected-oriented framework that facilitates efficient workflows that are flexible and automatic. This paper illustrates the various capabilities of the software and demonstrates its utility in realistic applications by producing high-quality, multiscale, unstructured meshes.


Sign in / Sign up

Export Citation Format

Share Document