Recirculation of Canadian Basin Deep Water in the Amundsen Sea

Author(s):  
Salar Karam ◽  
Céline Heuzé ◽  

<p>Previous literature has shown that Canadian Basin Deep Water (CBDW) crosses the Lomonosov Ridge into the Amundsen Basin close to the North Pole. This intrusion subsequently flows along the ridge towards Greenland and eventually all the way to the Greenland Sea, but an influence of CBDW in other parts of the Amundsen Basin has also been shown. We detect this deep CBDW intrusion, which is visible as a salinity maximum and oxygen minimum at a depth of about 2000 metres, in hydrographic measurements from MOSAiC and historical data sets. We also use measurements of CFC concentrations for increased robustness, as the high age of CBDW means the water mass is characterised by a CFC minimum. We map the recirculation of this CBDW in the Amundsen Basin and determine its spatial and temporal variability. In particular, we find that CBDW likely flows as a boundary current going eastwards along Gakkel Ridge, and even detect CBDW-like properties on the Nansen Basin side of Gakkel Ridge. As the Arctic Ocean is changing rapidly, understanding its deep circulation and its drivers is becoming increasingly urgent.</p>

2021 ◽  
Author(s):  
Ilona Goszczko ◽  
Eleanor Frajka-Williams ◽  
Louis Clement ◽  
N. Penny Holliday

<p>The Labrador Sea’s surface circulation remains important for the large-scale thermohaline circulation due to its fast response to atmospheric forcing and strong links to the North Atlantic and the Arctic Ocean’s counterparts. Its role in redistribution of heat and momentum, as well as for the biochemical exchange with the atmosphere is crucial in several time and space scales. The region is characterised by advection of freshwater originating from the combined melt of the Arctic Ocean’s sea-ice and Greenland’s glaciers around and towards the interior of the Labrador Sea. The fate of surface freshwater is an important factor that modifies ocean stratification, deep water convection and thus, ocean climate. Despite the major role of surface freshwater in the Labrador Sea, the dominant mechanism responsible for its offshore transport remains debatable, whether it is due to wind-induced Ekman transport, particularly strong in winter, or to eddy advection.</p><p>To explore this disagreement, we use surface drifters deployed in three seasons: 50 in December 2019, 50 in March 2020 and 50 in August 2020 in the shelf/slope location off Cape Desolation and near Qaqortoq, a town in the south-west Greenland. The drifters are equipped with temperature sensors and underwater drogues allowing them to follow the cyclonic surface currents: first, the along-shelf, coastal current and along-slope, boundary current west of Greenland; then, if they are able to detach from the shelf edge, the interior circulation of the central Labrador Sea that directs them south-westward from the Davis Strait; eventually, joining the coastal and along-slope boundary currents east of Labrador before circulating into the Labrador Sea’s central basins or eventually leaving the study area.</p><p>To investigate the dominant force responsible for the surface transport we use a wind product (ERA5) in a combination with daily SST (OSTIA). Detachment from boundary current is defined as crossing of the 2500 m isobath. The number of crossings varies depending on the season and weather conditions, e.g. an abrupt change in wind direction. This, in turn, may create upwelling of deep-water masses near the shelf-break. However, trajectories of drifters superimposed on SST maps indicate that besides Ekman transport, eddies carry shelf-originating water offshore as well. Auxiliary data from below (Argo floats and other CTD profiles collected near the drifters) allow to distinguish how deep both processes can leave their signature or whether they can drive a return flow.</p><p>If any substantial changes in the North Atlantic wind field occur in the future, the fate of the surface water transport in the Labrador Sea will also change, both in respect to its volume and direction. This could potentially affect the balance between Ekman transport and eddies revealed by our analysis of surface drifters data.</p>


2015 ◽  
Vol 11 (4) ◽  
pp. 669-685 ◽  
Author(s):  
C. Consolaro ◽  
T. L. Rasmussen ◽  
G. Panieri ◽  
J. Mienert ◽  
S. Bünz ◽  
...  

Abstract. We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (~ 80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dates reveal a detailed chronology for the last 14 ka BP. The δ 13C record measured on the benthonic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values termed carbon isotope excursion (CIE I and CIE II, respectively). The values were as low as −4.37‰ in CIE I, correlating with the Bølling–Allerød interstadials, and as low as −3.41‰ in CIE II, correlating with the early Holocene. In the Bølling–Allerød interstadials, the planktonic foraminifera also show negative values, probably indicating secondary methane-derived authigenic precipitation affecting the foraminiferal shells. After a cleaning procedure designed to remove authigenic carbonate coatings on benthonic foraminiferal tests from this event, the 13C values are still negative (as low as −2.75‰). The CIE I and CIE II occurred during periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic, suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.


The Tertiary was a period of dramatic changes of the palaeo-oceanography of the world’s oceans in general and of the North Atlantic in particular. These changes were caused by (1) the bathymetric evolution of ocean basins and intrabasin pathways (opening of the Norwegian-Greenland Seas and of the pathway to the Arctic Ocean, interruption of the circumglobal equatorial seaway); (2) the geographical development of the oceans and adjacent marginal basins in the context of rapid and intensive eustatic sea level fluctuations; and (3) the deterioration of the global climate throughout the Tertiary (change from a non-glacial to a glacial world, causing major changes in circulation of the surface and deep water). A biostratigraphy of Tertiary sediments deposited close to the continental margins has been developed by using remains of planktonic floras and faunas. Their presence in these sediments and their usefulness for long distance correlations of margin sediments, depend upon the circulation pattern and hydrographic gradients of the oceanic surface and deep water masses, the climatic regime over the continental border zones, and the probability of their post-depositional preservation.


2005 ◽  
Vol 35 (8) ◽  
pp. 1489-1493 ◽  
Author(s):  
M-L. Timmermans ◽  
P. Winsor ◽  
J. A. Whitehead

Abstract The Arctic Ocean likely impacts global climate through its effect on the rate of deep-water formation and the subsequent influence on global thermohaline circulation. Here, the renewal of the deep waters in the isolated Canadian Basin is quanitified. Using hydraulic theory and hydrographic observations, the authors calculate the magnitude of this renewal where circumstances have thus far prevented direct measurements. A volume flow rate of Q = 0.25 ± 0.15 Sv (Sv ≡ 106 m3 s−1) from the Eurasian Basin to the Canadian Basin via a deep gap in the dividing Lomonosov Ridge is estimated. Deep-water renewal time estimates based on this flow are consistent with 14C isolation ages. The flow is sufficiently large that it has a greater impact on the Canadian Basin deep water than either the geothermal heat flux or diffusive fluxes at the deep-water boundaries.


2020 ◽  
Author(s):  
Randelle M. Bundy ◽  
Alessandro Tagliabue ◽  
Nicholas J. Hawco ◽  
Peter L. Morton ◽  
Benjamin S. Twining ◽  
...  

Abstract. Cobalt (Co) is an important bioactive trace metal that can limit or co-limit phytoplankton growth in many regions of the ocean. Total dissolved and labile Co measurements in the Canadian sector of the Arctic Ocean during U.S. GEOTRACES Arctic expedition (GN01) and the Canadian International Polar Year-GEOTRACES expedition (GIPY14) revealed a dynamic biogeochemical cycle for Co in this basin. The major sources of Co in the Arctic were from shelf regions and rivers, with only minimal contributions from other freshwater sources (sea ice, snow) and aeolian deposition. The most striking feature was the extremely high concentrations of dissolved Co in the upper 100 m, with concentrations routinely exceeding 800 pmol L−1 over the shelf regions. This plume of high Co persisted throughout the Arctic basin and extended to the North Pole, where sources of Co shifted from primarily shelf-derived to riverine, as freshwater from Arctic rivers was entrained in the Transpolar Drift. Dissolved Co was also strongly organically-complexed in the Arctic, ranging from 70–100 % complexed in the surface and deep ocean, respectively. Deep water concentrations of dissolved Co were remarkably consistent throughout the basin (~ 55 pmol L−1), with concentrations reflecting those of deep Atlantic water and deep ocean scavenging of dissolved Co. A biogeochemical model of Co cycling was used to support the hypothesis that the majority of the high surface Co in the Arctic was emanating from the shelf. The model showed that the high concentrations of Co observed along the transect were due to the large shelf area of the Arctic, as well as dampened scavenging of Co by manganese (Mn)-oxidizing bacteria due to the lower temperatures. The majority of this scavenging appears to have occurred in the upper 200 m, with minimal additional scavenging below this depth. Preliminary evidence suggests that both dissolved and labile Co are increasing over time on the Arctic shelf, and the elevated surface concentrations of Co likely leads to a net flux of Co out of the Arctic, with implications for downstream biological uptake of Co in the North Atlantic and elevated Co in North Atlantic Deep Water. Understanding the current distributions of Co in the Arctic will be important for constraining changes to Co inputs resulting from regional intensification of freshwater fluxes from ice and permafrost melt in response to ongoing climate change.


2021 ◽  
Author(s):  
Jannes Koelling ◽  
Dariia Atamanchuk ◽  
Johannes Karstensen ◽  
Patricia Handmann ◽  
Douglas W. R. Wallace

Abstract. The Labrador Sea in the North Atlantic Ocean is one of the few regions globally where oxygen from the atmosphere can reach the deep ocean directly. This is the result of wintertime convection, which homogenizes the water column to a depth of up to 2000 m, and brings deep water undersaturated in oxygen into contact with the atmosphere. In this study, we analyze how the intense oxygen uptake during Labrador Sea Water (LSW) formation affects the properties of the outflowing deep western boundary current, which ultimately feeds the upper part of the North Atlantic Deep Water layer in much of the Atlantic Ocean. Seasonal cycles of oxygen concentration, temperature, and salinity from a two-year time series collected by sensors moored at 600 m nominal depth in the outflowing boundary current at 53° N show that LSW is primarily exported in the months following the onset of convection, from March to August. During the rest of the year, properties of the outflow resemble those of Irminger Water, which enters the basin with the boundary current from the Irminger Sea. The input of newly ventilated LSW increases the oxygen concentration from 298 μmol L−1 in January to a maximum of 306 μmol L−1 in April. As a result of this LSW input, 1.57 × 1012 mol year−1 of oxygen are added to the outflowing boundary current, mostly during summer, equivalent to 49 % of the wintertime uptake from the atmosphere in the interior of the basin. The export of oxygen from the subpolar gyre associated with this direct southward pathway of LSW is estimated to supply about 71 % of the oxygen consumed annually in the upper North Atlantic Deep Water layer in the Atlantic Ocean between the equator and 50° N. Our results show that the formation of LSW is important for replenishing oxygen to the deep oceans, meaning that possible changes in its formation rate and ventilation due to climate change could have wide-reaching impacts on marine life.


2012 ◽  
Vol 53 (60) ◽  
pp. 19-28 ◽  
Author(s):  
E.J. Steig ◽  
Q. Ding ◽  
D.S. Battisti ◽  
A. Jenkins

AbstractOutlet glaciers draining the Antarctic ice sheet into the Amundsen Sea Embayment (ASE) have accelerated in recent decades, most likely as a result of increased melting of their ice-shelf termini by warm Circumpolar Deep Water (CDW). An ocean model forced with climate reanalysis data shows that, beginning in the early 1990s, an increase in westerly wind stress near the continental shelf edge drove an increase in CDW inflow onto the shelf. The change in local wind stress occurred predominantly in fall and early winter, associated with anomalous high sea-level pressure (SLP) to the north of the ASE and an increase in sea surface temperature (SST) in the central tropical Pacific. The SLP change is associated with geopotential height anomalies in the middle and upper troposphere, characteristic of a stationary Rossby wave response to tropical SST forcing, rather than with changes in the zonally symmetric circulation. Tropical Pacific warming similar to that of the 1990s occurred in the 1940s, and thus is a candidate for initiating the current period of ASE glacier retreat.


2005 ◽  
Vol 35 (5) ◽  
pp. 775-789 ◽  
Author(s):  
Yoshiki Komuro ◽  
Hiroyasu Hasumi

Abstract Low-salinity water export through the Canadian Archipelago is one of the main components of the freshwater budget in the Arctic Ocean. Nevertheless, the Canadian Archipelago is closed in most global ocean models. How it is that deep-water formation at high latitudes of the Northern Hemisphere depends on the opening and closing of the Canadian Archipelago is investigated. An ice–ocean coupled model, whose horizontal resolution is 1°, is used without restoring surface salinity to observed data. When the Canadian Archipelago is open, the Atlantic deep circulation strengthens by 21%. This enhancement is caused by intensification of deep-water formation in the northern North Atlantic Ocean. Surface salinity in these regions is affected by the East Greenland Current, which flows from the Fram Strait and increases its salinity when the Canadian Archipelago is opened. The low-salinity flow through the Canadian Archipelago affects surface salinity only in the western part of the Labrador Sea. A cyclonic circulation in the Labrador Sea plays an important role in limiting the direct impact of the Canadian Archipelago throughflow. Consequently, the deep-water formation there is intensified and the Atlantic deep circulation is strengthened. Thus, it is suggested that the Canadian Archipelago throughflow does not weaken the Atlantic deep circulation by the freshening of the Labrador Sea but strengthens it by the salinity increase in the Fram Strait.


2012 ◽  
Vol 6 (6) ◽  
pp. 4829-4860 ◽  
Author(s):  
J. A. Griggs ◽  
J. L. Bamber ◽  
R. T. W. L. , Hurkmans ◽  
J. A. Dowdesewell ◽  
S. P. Gogineni ◽  
...  

Abstract. We present a new bed elevation dataset for Greenland derived from a combination of multiple airborne ice thickness surveys undertaken between the 1970s and 2011. Around 344 000 line kilometres of airborne data were used, with the majority of this having been collected since the year 2000, when the last comprehensive compilation was undertaken. The airborne data were combined with satellite-derived elevations for non glaciated terrain to produce a consistent bed digital elevation model (DEM) over the entire island including across the glaciated/ice free boundary. The DEM was extended to the continental margin with the aid of bathymetric data, primarily from a compilation for the Arctic. Ice shelf thickness was determined where a floating tongue exists, in particular in the north. The across-track spacing between flight lines warranted interpolation at 1 km postings near the ice sheet margin and 2.5 km in the interior. Grids of ice surface elevation, error estimates for the DEM, ice thickness and data sampling density were also produced alongside a mask of land/ocean/grounded ice/floating ice. Errors in bed elevation range from a minimum of ±6 m to about ±200 m, as a function of distance from an observation and local topographic variability. A comparison with the compilation published in 2001 highlights the improvement in resolution afforded by the new data sets, particularly along the ice sheet margin, where ice velocity is highest and changes most marked. We use the new bed and surface DEMs to calculate the hydraulic potential for subglacial flow and present the large scale pattern of water routing. We estimate that the volume of ice included in our land/ice mask would raise eustatic sea level by 7.36 m, excluding any solid earth effects that would take place during ice sheet decay.


2014 ◽  
Vol 10 (5) ◽  
pp. 4191-4227 ◽  
Author(s):  
C. Consolaro ◽  
T. L. Rasmussen ◽  
G. Panieri ◽  
J. Mienert ◽  
S. Bünz ◽  
...  

Abstract. We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (∼80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dating reveals a detailed chronology for the last 14 ka BP. The δ13C record measured on the benthic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values, as low as −4.37‰ in the Bølling–Allerød interstadials and as low as −3.41‰ in the early Holocene. After cleaning procedure designed to remove all authigenic carbonate coatings on benthic foraminiferal tests, the 13C values are still negative (as low as −2.75‰). We have interpreted these negative carbon isotope excursions (CIEs) to record past methane release events, resulting from the incorporation of 13C-depleted carbon from methane emissions into the benthic foraminiferal shells. The CIEs during the Bølling–Allerød interstadials and the early Holocene relate to periods of ocean warming, sea level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.


Sign in / Sign up

Export Citation Format

Share Document