A 10-year regional reanalysis of desert dust aerosol at high spatial resolution

Author(s):  
Enza Di Tomaso ◽  
Jerónimo Escribano ◽  
Paul Ginoux ◽  
Sara Basart ◽  
Francesca Macchia ◽  
...  

<p>Desert dust is the most abundant aerosol by mass residing in the atmosphere. It plays a key role in the Earth’s system by influencing the radiation balance, by affecting cloud formation and cloud chemistry, and by acting as a fertilizer for the growth of phytoplankton and for soil through its deposition over the ocean and land.</p><p>Due to the nature of its emission and transport, atmospheric dust concentrations are highly variable in space and time and, therefore, require a continuous monitoring by measurements. Dust observations are best exploited by being combined with model simulations for the production of analyses and reanalyses, i.e., complete and consistent four dimensional reconstructions of the atmosphere. Existing aerosol (and dust) reanalyses for the global domain have been produced by total aerosol constraint and at relatively coarse spatial resolution, while regional reanalyses exclude some of the regions containing the major sources of desert dust in Northern Africa and the Middle East.</p><p>We present here a 10-year reanalysis data set of desert dust at a horizontal resolution of 0.1°, and which covers the domain of Northern Africa, the Middle East and Europe. The reanalysis has been produced by assimilating in the MONARCH chemical weather prediction system (Di Tomaso et al., 2017) satellite retrievals over dust source regions with specific dust observational constraint (Ginoux et al., 2012; Pu and Ginoux, 2016).</p><p>Furthermore, we describe its evaluation in terms of data assimilation diagnostics and comparison against independent observations. Statistics of analysis departures from assimilated observations prove the consistency of the data assimilation system showing that the analysis is closer to the observations than the first-guess. Temporal mean of analysis increments show that the assimilation led to an overall reduction of dust with pattern of systematic corrections that vary with the seasons, and can be linked primarily to misrepresentation of source strength.</p><p>Independent evaluation of the analysis with AERONET observations indicates that the reanalysis data set is highly accurate, and provides therefore a reliable historical record of atmospheric desert dust concentrations in a recent decade.</p><p><strong>References</strong></p><p>Di Tomaso, E., Schutgens, N. A. J., Jorba, O., and Pérez García-Pando, C. (2017): Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0, Geosci. Model Dev., 10, 1107-1129.</p><p>Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. and Zhao, M. (2012): Global-Scale Attribution of Anthropogenic and Natural Dust Sources and Their Emission Rates Based on Modis Deep Blue Aerosol Products. Rev Geophys 50.</p><p>Pu, B., and Ginoux, P. (2016). The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria. Atmospheric Chemistry and Physics, 16(21), 13431-13448.</p><p><strong>Acknowledgements </strong></p><p>The authors acknowledge the DustClim project which is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (435690462); PRACE (eDUST/eFRAGMENT1/eFRAGMENT2), RES (AECT-2020-3-0013/AECT-2019-3-0001/AECT-2020-1-0007) for awarding access to MareNostrum at BSC and for technical support.</p>

2020 ◽  
Author(s):  
Enza Di Tomaso ◽  
Sara Basart ◽  
Jeronimo Escribano ◽  
Paul Ginoux ◽  
Oriol Jorba ◽  
...  

<p>DustClim (Dust Storms Assessment for the development of user-oriented Climate Services in Northern Africa, Middle East and Europe) is a project of the European Research Area For Climate Services (ERA4CS). DustClim is aiming to provide reliable information on sand and dust storms for developing dust-related services for selected socio-economic sectors: air quality, aviation and solar energy.</p><p>This contribution will describe the work done within the DustClim project towards the production of a dust reanalysis over the domain of Northern Africa, the Middle East and Europe at an unprecedented high spatial resolution (at 10km x 10km) using the state-of-art Multiscale Online Nonhydrostatic Atmosphere Chemistry model (MONARCH) and its data assimilation capability (Di Tomaso et al., 2017). An ensemble-based Kalman filter (namely the local ensemble transform Kalman filter – LETKF) has been utilized to optimally combine model simulations and satellite retrievals.</p><p>Dust ensemble forecasts are used to estimate flow-dependent forecast uncertainty, which is used by the data assimilation scheme to optimally combine model prior information with satellite retrievals. Satellite observations from MODIS Deep Blue with specific observational constraint for dust (Ginoux et al., 2012; Pu and Ginoux, 2016; Sayer et al., 2014) are considered for assimilation over land surfaces, including source regions. MONARCH ensemble has been generated by applying multi-parameters, multi-physics, multi-meteorological initial and boundary conditions perturbations. Sensitive parameters of the assimilation configuration like the balance between observational and background uncertainty, or the spatial location of errors have been carefully calibrated.</p><p>The dust reanalysis for the period 2011-2016 is being compared against independent dust-filtered observations from AERONET (AErosol RObotic NETwork) show the benefit of the assimilation of dust-related MODIS Deep Blue products over areas not easily covered by other observational datasets. Particularly relevant is the improvement of the model skills over the Sahara.</p><p>References:<br>Di Tomaso, E., Schutgens, N. A. J., Jorba, O., and Pérez García-Pando, C. (2017): Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0, Geosci. Model Dev., 10, 1107-1129, doi:10.5194/gmd-10-1107-2017.<br>Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. and Zhao, M. Global-Scale Attribution of Anthropogenic and Natural Dust Sources and Their Emission Rates Based on Modis Deep Blue Aerosol Products. Rev Geophys 50, doi:10.1029/2012rg000388 (2012).<br>Pu, B., and Ginoux, P. (2016). The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria. Atmospheric Chemistry and Physics, 16(21), 13431-13448.<br>Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., and Jeong, M.-J.: MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations, J. Geophys. Res.-Atmos., 119, 13965–13989, doi:10.1002/2014JD022453, 2014.</p><p>Acknowledgement<br>DustClim project is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462). We acknowledge PRACE for awarding access to HPC resources through the eDUST and eFRAGMENT1 projects.</p><p> </p>


2021 ◽  
Author(s):  
Enza Di Tomaso ◽  
Jerónimo Escribano ◽  
Paul Ginoux ◽  
Sara Basart ◽  
Francesca Macchia ◽  
...  

2017 ◽  
Vol 10 (3) ◽  
pp. 1107-1129 ◽  
Author(s):  
Enza Di Tomaso ◽  
Nick A. J. Schutgens ◽  
Oriol Jorba ◽  
Carlos Pérez García-Pando

Abstract. A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter – LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets. The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.


2010 ◽  
Vol 3 (5) ◽  
pp. 4091-4167 ◽  
Author(s):  
E. J. Hyer ◽  
J. S. Reid ◽  
J. Zhang

Abstract. MODIS Collection 5 retrieved aerosol optical depth (AOD) over land (MOD04/MYD04) was evaluated using 4 years of matching AERONET observations, to assess its suitability for aerosol data assimilation in numerical weather prediction models. Examination of errors revealed important sources of variation in random errors (e.g., atmospheric path length, scattering angle "hot spot"), and systematic biases (e.g., snow and cloud contamination, surface albedo bias). A set of quality assurance (QA) filters was developed to avoid conditions with potential for significant AOD error. An empirical correction for surface boundary condition using the MODIS 16-day albedo product captured 25% of the variability in the site mean bias at low AOD. A correction for regional microphysical bias using the AERONET fine/coarse partitioning information increased the global correlation between MODIS and AERONET from r2=0.62–0.65 to r2=0.71–0.73. Application of these filters and corrections improved the global fraction of MODIS AOD within (0.05±20%) of AERONET to 77%, up from 67% using only built-in MODIS QA. The compliant fraction in individual regions was improved by as much as 20% (South America). An aggregated Level 3 product for use in a data assimilation system is described, along with a prognostic error model to estimate uncertainties on a per-observation basis. The new filtered and corrected Level 3 product has improved performance over built-in MODIS QA with less than a 15% reduction in overall data available for data assimilation.


2012 ◽  
Vol 12 (12) ◽  
pp. 31767-31828 ◽  
Author(s):  
A. Hilboll ◽  
A. Richter ◽  
J. P. Burrows

Abstract. Tropospheric NO2, a key pollutant in particular in cities, has been measured from space since the mid-1990s by the GOME, SCIAMACHY, OMI, and GOME-2 instruments. These data provide a unique global long-term data set of tropospheric pollution. However, the measurements differ in spatial resolution, local time of measurement, and measurement geometry. All these factors can severely impact the retrieved NO2 columns, which is why they need to be taken into account when analysing time series spanning more than one instrument. In this study, we present several ways to explicitly account for the instrumental differences in trend analyses of the NO2 columns derived from satellite measurements, while preserving their high spatial resolution. Both a physical method, based on spatial averaging of the measured earthshine spectra and extraction of a resolution pattern, and statistical methods, including instrument-dependent offsets in the fitted trend function, are developed. These methods are applied to data from GOME and SCIAMACHY separately, to the combined time series and to an extended data set comprising also GOME-2 and OMI measurements. All approaches show consistent trends of tropospheric NO2 for a selection of areas on both regional and city scales, for the first time allowing consistent trend analysis of the full time series at high spatial resolution and significantly reducing the uncertainties of the retrieved trend estimates compared to previous studies. We show that measured tropospheric NO2 columns have been strongly increasing over China, the Middle East, and India, with values over East Central China triplicating from 1996 to 2011. All parts of the developed world, including Western Europe, the United States, and Japan, show significantly decreasing NO2 amounts in the same time period. On a megacity level, individual trends can be as large as +27 ± 3.7% yr−1 and +20 ± 1.9% yr−1 in Dhaka and Baghdad, respectively, while Los Angeles shows a very strong decrease of −6.0 ± 0.37% yr−1. Most megacities in China, India, and the Middle East show increasing NO2 columns of +5–10% yr−1, leading to a doubling to triplication within the observed period. While linear trends derived with the different methods are consistent, comparison of the GOME and SCIAMACHY time series as well as inspection of time series over individual areas shows clear indication of non-linear changes in NO2 columns in response to rapid changes in technology used and the economical situation.


2018 ◽  
Author(s):  
Angela Benedetti ◽  
Francesca Di Giuseppe ◽  
Luke Jones ◽  
Vincent-Henri Peuch ◽  
Samuel Rémy ◽  
...  

Abstract. Asian Dust is a seasonal meteorological phenomenon which affects East Asia, and has severe consequences on the air quality of China, North and South Korea and Japan. Despite the continental extent, the prediction of severe episodes and the anticipation of their consequences is challenging. Three one-year experiments were run to assess the skill of the model of the European Centre for Medium-Range Weather Forecasts (ECMWF) in monitoring Asian dust and understand its relative contribution to air quality over China. Data used were the MODIS Dark Target and the Deep Blue Aerosol Optical Depth. In particular the experiments aimed at understanding the added value of data assimilation runs over a model run without any aerosol data. The year 2013 was chosen as representative for the availability of independent Aerosol Optical Depth (AOD) data from two established ground-based networks (AERONET and CARSNET), which could be used to evaluate experiments. Particulate Matter (PM) data from the China Environmental Protection Agency (CEPA) were also used in the evaluation. Results show that the assimilation of satellite AOD data is beneficial to predict the extent and magnitude of desert-dust events and to improve the forecast of such events. The availability of observations from the MODIS Deep Blue algorithm over bright surfaces is an asset, allowing for a better localization of the sources and definition of the dust events. In general both experiments constrained by data assimilation perform better that the unconstrained experiment, generally showing smaller mean normalized bias and fractional gross error with respect to the independent verification datasets. The impact of the assimilated satellite observations is larger at analysis time, but lasts well into the forecast. While assimilation is not a substitute for model development and characterization of the emission sources, results indicate that it can play a big role in delivering improved forecasts of Asian Dust.


2011 ◽  
Vol 4 (3) ◽  
pp. 379-408 ◽  
Author(s):  
E. J. Hyer ◽  
J. S. Reid ◽  
J. Zhang

Abstract. MODIS Collection 5 retrieved aerosol optical depth (AOD) over land (MOD04/MYD04) was evaluated using 4 years of matching AERONET observations, to assess its suitability for aerosol data assimilation in numerical weather prediction models. Examination of errors revealed important sources of variation in random errors (e.g., atmospheric path length, scattering angle "hot spot"), and systematic biases (e.g., snow and cloud contamination, surface albedo bias). A set of quality assurance (QA) filters was developed to avoid conditions with potential for significant AOD error. An empirical correction for surface boundary condition using the MODIS 16-day albedo product captured 25% of the variability in the site mean bias at low AOD. A correction for regional microphysical bias using the AERONET fine/coarse partitioning information increased the global correlation between MODIS and AERONET from r2 = 0.62–0.65 to r2 = 0.71–0.73. Application of these filters and corrections improved the global fraction of MODIS AOD within (0.05 ± 20%) of AERONET to 77%, up from 67% using only built-in MODIS QA. The compliant fraction in individual regions was improved by as much as 20% (South America). An aggregated Level 3 product for use in a data assimilation system is described, along with a prognostic error model to estimate uncertainties on a per-observation basis. The new filtered and corrected Level 3 product has improved performance over built-in MODIS QA with less than a 15% reduction in overall data available for data assimilation.


2016 ◽  
Vol 20 (7) ◽  
pp. 3059-3076 ◽  
Author(s):  
Patricia López López ◽  
Niko Wanders ◽  
Jaap Schellekens ◽  
Luigi J. Renzullo ◽  
Edwin H. Sutanudjaja ◽  
...  

Abstract. The coarse spatial resolution of global hydrological models (typically  >  0.25°) limits their ability to resolve key water balance processes for many river basins and thus compromises their suitability for water resources management, especially when compared to locally tuned river models. A possible solution to the problem may be to drive the coarse-resolution models with locally available high-spatial-resolution meteorological data as well as to assimilate ground-based and remotely sensed observations of key water cycle variables. While this would improve the resolution of the global model, the impact of prediction accuracy remains largely an open question. In this study, we investigate the impact of assimilating streamflow and satellite soil moisture observations on the accuracy of global hydrological model estimations, when driven by either coarse- or high-resolution meteorological observations in the Murrumbidgee River basin in Australia. To this end, a 0.08° resolution version of the PCR-GLOBWB global hydrological model is forced with downscaled global meteorological data (downscaled from 0.5° to 0.08° resolution) obtained from the WATCH Forcing Data methodology applied to ERA-Interim (WFDEI) and a local high-resolution, gauging-station-based gridded data set (0.05°). Downscaled satellite-derived soil moisture (downscaled from  ∼  0.5° to 0.08° resolution) from the remote observation system AMSR-E and streamflow observations collected from 23 gauging stations are assimilated using an ensemble Kalman filter. Several scenarios are analysed to explore the added value of data assimilation considering both local and global meteorological data. Results show that the assimilation of soil moisture observations results in the largest improvement of the model estimates of streamflow. The joint assimilation of both streamflow and downscaled soil moisture observations leads to further improvement in streamflow simulations (20 % reduction in RMSE). Furthermore, results show that the added contribution of data assimilation, for both soil moisture and streamflow, is more pronounced when the global meteorological data are used to force the models. This is caused by the higher uncertainty and coarser resolution of the global forcing. We conclude that it is possible to improve PCR-GLOBWB simulations forced by coarse-resolution meteorological data with assimilation of downscaled spaceborne soil moisture and streamflow observations. These improved model results are close to the ones from a local model forced with local meteorological data. These findings are important in light of the efforts that are currently made to move to global hyper-resolution modelling and can help to advance this research.


2015 ◽  
Vol 15 (5) ◽  
pp. 2693-2707 ◽  
Author(s):  
A. Montornès ◽  
B. Codina ◽  
J. W. Zack

Abstract. Although ozone is an atmospheric gas with high spatial and temporal variability, mesoscale numerical weather prediction (NWP) models simplify the specification of ozone concentrations used in their shortwave schemes by using a few ozone profiles. In this paper, a two-part study is presented: (i) an evaluation of the quality of the ozone profiles provided for use with the shortwave schemes in the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) model and (ii) an assessment of the impact of deficiencies in those profiles on the performance of model simulations of direct solar radiation. The first part compares simplified data sets used to specify the total ozone column in six schemes (i.e., Goddard, New Goddard, RRTMG, CAM, GFDL and Fu–Liou–Gu) with the Multi-Sensor Reanalysis data set during the period 1979–2008 examining the latitudinal, longitudinal and seasonal limitations in the ozone profile specifications of each parameterization. The results indicate that the maximum deviations are over the poles and show prominent longitudinal patterns in the departures due to the lack of representation of the patterns associated with the Brewer–Dobson circulation and the quasi-stationary features forced by the land–sea distribution, respectively. In the second part, the bias in the simulated direct solar radiation due to these deviations from the simplified spatial and temporal representation of the ozone distribution is analyzed for the New Goddard and CAM schemes using the Beer–Lambert–Bouguer law and for the GFDL using empirical equations. For radiative applications those simplifications introduce spatial and temporal biases with near-zero departures over the tropics throughout the year and increasing poleward with a maximum in the high middle latitudes during the winter of each hemisphere.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
H. Dobslaw

AbstractGlobal surface pressure grids from 14.5 years of 6-hourly analyses out of both the operational ECMWF weather prediction model and ERA-Interim are mapped to a common reference orography by means of ECMWF’s mean sea-level pressure diagnostic. The approach reduces both relative biases and residual variability by about one order of magnitude and thereby achieves a consistency among both data sets at the level of about 1 hPa. Remaining differences rather reflect temperature biases and also resolution limitations of the reanalysis data set, but are not anymore related to the local roughness in orography or to changes in the spatial resolution of the operational model. The presented reduction method therefore allows to obtain surface pressure time series with the long-time consistency of a reanalysis from an operational numerical weather model with much higher resolution and much shorter latency, making the results suitable for geodetic near realtime applications requiring continuously updated time series that are homogeneous over many years.


Sign in / Sign up

Export Citation Format

Share Document