scholarly journals Analysis of the ozone profile specifications in the WRF-ARW model and their impact on the simulation of direct solar radiation

2015 ◽  
Vol 15 (5) ◽  
pp. 2693-2707 ◽  
Author(s):  
A. Montornès ◽  
B. Codina ◽  
J. W. Zack

Abstract. Although ozone is an atmospheric gas with high spatial and temporal variability, mesoscale numerical weather prediction (NWP) models simplify the specification of ozone concentrations used in their shortwave schemes by using a few ozone profiles. In this paper, a two-part study is presented: (i) an evaluation of the quality of the ozone profiles provided for use with the shortwave schemes in the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) model and (ii) an assessment of the impact of deficiencies in those profiles on the performance of model simulations of direct solar radiation. The first part compares simplified data sets used to specify the total ozone column in six schemes (i.e., Goddard, New Goddard, RRTMG, CAM, GFDL and Fu–Liou–Gu) with the Multi-Sensor Reanalysis data set during the period 1979–2008 examining the latitudinal, longitudinal and seasonal limitations in the ozone profile specifications of each parameterization. The results indicate that the maximum deviations are over the poles and show prominent longitudinal patterns in the departures due to the lack of representation of the patterns associated with the Brewer–Dobson circulation and the quasi-stationary features forced by the land–sea distribution, respectively. In the second part, the bias in the simulated direct solar radiation due to these deviations from the simplified spatial and temporal representation of the ozone distribution is analyzed for the New Goddard and CAM schemes using the Beer–Lambert–Bouguer law and for the GFDL using empirical equations. For radiative applications those simplifications introduce spatial and temporal biases with near-zero departures over the tropics throughout the year and increasing poleward with a maximum in the high middle latitudes during the winter of each hemisphere.

2014 ◽  
Vol 14 (14) ◽  
pp. 20231-20257
Author(s):  
A. Montornès ◽  
B. Codina ◽  
J. W. Zack

Abstract. Although ozone is an atmospheric gas with high spatial and temporal variability, mesoscale numerical weather prediction (NWP) models simplify the specification of ozone concentrations used in their shortwave schemes by using a few ozone profiles. In this paper, a two-part study is presented: (i) an assessment of the quality of the ozone profiles provided for use with the shortwave schemes in the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) model and (ii) the impact of deficiencies in those profiles on the performance of model simulations of direct solar radiation. The first part compares simplified datasets used to specify the total ozone column in five schemes (i.e. Goddard, New Goddard, RRTMG, CAM and Fu–Liou–Gu) with the Multi-Sensor Reanalysis dataset during the period 1979–2008 examining the latitudinal, longitudinal and seasonal limitations in the ozone modeling of each parameterization. The results indicate that the maximum deviations are over the poles due to the Brewer–Dobson circulation and there are prominent longitudinal patterns in the departures due to quasi-stationary features forced by the land–sea distribution. In the second part, the bias in the simulated direct solar radiation due to these deviations from the simplified spatial and temporal representation of the ozone distribution is analyzed for the New Goddard and CAM schemes using the Beer–Lambert–Bouger law. For radiative applications those simplifications introduce spatial and temporal biases with near-zero departures over the tropics during all the year and increasing poleward with a maximum in the high middle latitudes during the winter of each hemisphere.


2016 ◽  
Author(s):  
A. Montornès ◽  
B. Codina ◽  
J. W. Zack ◽  
Y. Sola

Abstract. Solar eclipses are predictable astronomical events that abruptly reduce the incoming solar radiation into the Earth's atmosphere, which frequently result in non-negligible changes in meteorological fields. The meteorological impacts of these events have been analyzed in many studies since the late 1960s. The recent growth in the solar energy industry has greatly increased the interest in adding additional detail to the modeling of solar radiation variations in Numerical Weather Prediction (NWP) models for use in solar resource assessment and forecasting applications. The recent partial and total solar eclipses that occurred in USA (October 23, 2014) and Europe (March 20, 2015), respectively, are showing the necessity for including these astronomical events on the current solar parameterizations, beyond the purely meteorological interest. Although some studies added solar eclipse episodes within NWP codes in the 1990s and 2000s, they used eclipse parameterizations designed for a particular case of study. In contrast to these earlier implementations, this paper documents a new package for the Weather Research and Forecasting – Advanced Research (WRF-ARW) model that can simulate any partial, total or hybrid solar eclipse for the period 1950 to 2050 and is also extensible to a longer period. The algorithm computes analytically the trajectory of the Moon's shadow and the degree of obscuration of the solar disk at each grid-point of the domain based on the Bessel's method and the Five Millennium Catalog of Solar Eclipses provided by NASA, with a negligible computational time. Then, the incoming radiation is modified accordingly at each grid-point of the domain. This contribution is divided in two parts. First, we present a description of the implementation of the Bessel's method within the WRF-ARW model together with a validation for the period 1950-2050 of all solar eclipse trajectories with respect to NASA values. Second, we analyze the model response in four total solar eclipse episodes: 1994-11-03 (South America), 1999-08-11 (Europe), 2006-03-29 (North Africa) and 2009-07-22 (Eastern Asia). The second part includes a validation of the simulated global horizontal irradiance (GHI) with measurement data from selected Baseline Surface Radiation Network sites within the area affected by each event as well as an analysis of the impact of the GHI changes in surface temperature and wind speed.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yahya Albalawi ◽  
Jim Buckley ◽  
Nikola S. Nikolov

AbstractThis paper presents a comprehensive evaluation of data pre-processing and word embedding techniques in the context of Arabic document classification in the domain of health-related communication on social media. We evaluate 26 text pre-processings applied to Arabic tweets within the process of training a classifier to identify health-related tweets. For this task we use the (traditional) machine learning classifiers KNN, SVM, Multinomial NB and Logistic Regression. Furthermore, we report experimental results with the deep learning architectures BLSTM and CNN for the same text classification problem. Since word embeddings are more typically used as the input layer in deep networks, in the deep learning experiments we evaluate several state-of-the-art pre-trained word embeddings with the same text pre-processing applied. To achieve these goals, we use two data sets: one for both training and testing, and another for testing the generality of our models only. Our results point to the conclusion that only four out of the 26 pre-processings improve the classification accuracy significantly. For the first data set of Arabic tweets, we found that Mazajak CBOW pre-trained word embeddings as the input to a BLSTM deep network led to the most accurate classifier with F1 score of 89.7%. For the second data set, Mazajak Skip-Gram pre-trained word embeddings as the input to BLSTM led to the most accurate model with F1 score of 75.2% and accuracy of 90.7% compared to F1 score of 90.8% achieved by Mazajak CBOW for the same architecture but with lower accuracy of 70.89%. Our results also show that the performance of the best of the traditional classifier we trained is comparable to the deep learning methods on the first dataset, but significantly worse on the second dataset.


2019 ◽  
Vol 91 ◽  
pp. 05006
Author(s):  
Rami Qaoud ◽  
Alkama Djamal

The urban fabric of the desert cities is based on the principle of reducing the impact of urban canyons on direct solar radiation. Here comes this research, which is based on a comparative study of the periods of direct solarisation and values of the solar energy of urban canyons via two urban fabrics that have different building densities, where the ratio between L/W is different. In order to obtain the real values of the solar energy (thermal, lighting), the test field was examined every two hours, each three consecutive days. The measurement stations are positioned by the three types of the relationship between L/W, (L≥2w, L=w, L≤0.5w). According to the results, we noticed and recorded the difference in the periods of direct solarization between the types of urban engineering canyons, reaching 6 hours a day, the difference in thermal values of air, reaching 4 °C, and the difference in periods of direct natural lighting, reaching 6 hours. It should be noted that the role of the relationship between L/W is to protect the urban canyons by reducing the impact of direct solar radiation on urban canyons, providing longer hours of shading, and reducing solar energy levels (thermal, lighting) at the urban canyons. This research is classified under the research axis (the studies of external spaces in the urban environment according to the bioclimatic approach and geographic approach). But this research aims to focus on the tracking and studying the distribution of the solar radiation - thermal radiation and lighting radiation - in different types of street canyons by comparing the study of the direct solarization periods of each type and the quantity of solar energy collected during the solarization periods.


2015 ◽  
Vol 8 (1) ◽  
pp. 421-434 ◽  
Author(s):  
M. P. Jensen ◽  
T. Toto ◽  
D. Troyan ◽  
P. E. Ciesielski ◽  
D. Holdridge ◽  
...  

Abstract. The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the US Central Plains. A major component of the campaign was a six-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing data sets. Over the course of the 46-day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript provides details on the instrumentation used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings. In addition, the impact of including the humidity corrections and quality controls on the thermodynamic profiles that are used in the derivation of a large-scale model forcing data set are investigated. The results show a significant impact on the derived large-scale vertical velocity field illustrating the importance of addressing these humidity biases.


2021 ◽  
Author(s):  
David Cotton ◽  

<p><strong>Introduction</strong></p><p>HYDROCOASTAL is a two year project funded by ESA, with the objective to maximise exploitation of SAR and SARin altimeter measurements in the coastal zone and inland waters, by evaluating and implementing new approaches to process SAR and SARin data from CryoSat-2, and SAR altimeter data from Sentinel-3A and Sentinel-3B. Optical data from Sentinel-2 MSI and Sentinel-3 OLCI instruments will also be used in generating River Discharge products.</p><p>New SAR and SARin processing algorithms for the coastal zone and inland waters will be developed and implemented and evaluated through an initial Test Data Set for selected regions. From the results of this evaluation a processing scheme will be implemented to generate global coastal zone and river discharge data sets.</p><p>A series of case studies will assess these products in terms of their scientific impacts.</p><p>All the produced data sets will be available on request to external researchers, and full descriptions of the processing algorithms will be provided</p><p> </p><p><strong>Objectives</strong></p><p>The scientific objectives of HYDROCOASTAL are to enhance our understanding  of interactions between the inland water and coastal zone, between the coastal zone and the open ocean, and the small scale processes that govern these interactions. Also the project aims to improve our capability to characterize the variation at different time scales of inland water storage, exchanges with the ocean and the impact on regional sea-level changes</p><p>The technical objectives are to develop and evaluate  new SAR  and SARin altimetry processing techniques in support of the scientific objectives, including stack processing, and filtering, and retracking. Also an improved Wet Troposphere Correction will be developed and evaluated.</p><p><strong>Project  Outline</strong></p><p>There are four tasks to the project</p><ul><li>Scientific Review and Requirements Consolidation: Review the current state of the art in SAR and SARin altimeter data processing as applied to the coastal zone and to inland waters</li> <li>Implementation and Validation: New processing algorithms with be implemented to generate a Test Data sets, which will be validated against models, in-situ data, and other satellite data sets. Selected algorithms will then be used to generate global coastal zone and river discharge data sets</li> <li>Impacts Assessment: The impact of these global products will be assess in a series of Case Studies</li> <li>Outreach and Roadmap: Outreach material will be prepared and distributed to engage with the wider scientific community and provide recommendations for development of future missions and future research.</li> </ul><p> </p><p><strong>Presentation</strong></p><p>The presentation will provide an overview to the project, present the different SAR altimeter processing algorithms that are being evaluated in the first phase of the project, and early results from the evaluation of the initial test data set.</p><p> </p>


2009 ◽  
Vol 2 (1) ◽  
pp. 87-98 ◽  
Author(s):  
C. Lerot ◽  
M. Van Roozendael ◽  
J. van Geffen ◽  
J. van Gent ◽  
C. Fayt ◽  
...  

Abstract. Total O3 columns have been retrieved from six years of SCIAMACHY nadir UV radiance measurements using SDOAS, an adaptation of the GDOAS algorithm previously developed at BIRA-IASB for the GOME instrument. GDOAS and SDOAS have been implemented by the German Aerospace Center (DLR) in the version 4 of the GOME Data Processor (GDP) and in version 3 of the SCIAMACHY Ground Processor (SGP), respectively. The processors are being run at the DLR processing centre on behalf of the European Space Agency (ESA). We first focus on the description of the SDOAS algorithm with particular attention to the impact of uncertainties on the reference O3 absorption cross-sections. Second, the resulting SCIAMACHY total ozone data set is globally evaluated through large-scale comparisons with results from GOME and OMI as well as with ground-based correlative measurements. The various total ozone data sets are found to agree within 2% on average. However, a negative trend of 0.2–0.4%/year has been identified in the SCIAMACHY O3 columns; this probably originates from instrumental degradation effects that have not yet been fully characterized.


2021 ◽  
Author(s):  
Ahmed Attia ◽  
Matthew Lawrence

Abstract Distributed Fiber Optics (DFO) technology has been the new face for unconventional well diagnostics. This technology focuses on measuring Distributed Acoustic Sensing (DAS) and Distrusted Temperature Sensing (DTS) to give an in-depth understanding of well productivity pre and post stimulation. Many different completion design strategies, both on surface and downhole, are used to obtain the best fracture network outcome; however, with complex geological features, different fracture designs, and fracture driven interactions (FDIs) effecting nearby wells, it is difficult to grasp a full understanding on completion design performance for each well. Validating completion designs and improving on the learnings found in each data set should be the foundation in developing each field. Capturing a data set with strong evidence of what works and what doesn't, can help the operator make better engineering decisions to make more efficient wells as well as help gauge the spacing between each well. The focus of this paper will be on a few case studies in the Bakken which vividly show how infill wells greatly interfered with production output. A DFO deployed with a 0.6" OD, 23,000-foot-long carbon fiber rod to acquire DAS and DTS for post frac flow, completion, and interference evaluation. This paper will dive into the DFO measurements taken post frac to further explain what effects are seen on completion designs caused by interferences with infill wells; the learnings taken from the DFO post frac were applied to further escalate the understanding and awareness of how infill wells will preform on future pad sites. A showcase of three separate data sets from the Bakken will identify how effective DFO technology can be in evaluating and making informed decisions on future frac completions. In this paper we will also show and discuss how DFO can measure real time FDI events and what measures can be taken to lessen the impact on negative interference caused by infill wells.


2021 ◽  
Author(s):  
Gunta Kalvāne ◽  
Andis Kalvāns ◽  
Agrita Briede ◽  
Ilmārs Krampis ◽  
Dārta Kaupe ◽  
...  

<p>According to the Köppen climate classification, almost the entire area of Latvia belongs to the same climate type, Dfb, which is characterized by humid continental climates with warm (sometimes hot) summers and cold winters.  In the last decades whether conditions on the western coast of Latvia more characterized by temperate maritime climates. In this area there has been a transition (and still ongoing) to the climate type Cfb.</p><p>Temporal and spatial changes of temperature and precipitation regime have been examined in whole territory to identify the breaking point of climate type shifts. We used two type of climatological data sets: gridded daily temperature from the E-OBS data set version 21.0e (Cornes et al., 2018) and direct observations from meteorological stations (data source: Latvian Environment, Geology and Meteorology Centre). The temperature and precipitation regime have changed significantly in the last century - seasonal and regional differences can be observed in the territory of Latvia.</p><p>We have digitized and analysed more than 47 thousand phenological records, fixed by volunteers in period 1970-2018. Study has shown that significant seasonal changes have taken place across the Latvian landscape due to climate change (Kalvāne and Kalvāns, 2021). The largest changes have been recorded for the unfolding (BBCH11) and flowering (BBCH61) phase of plants – almost 90% of the data included in the database demonstrate a negative trend. The winter of 1988/1989 may be considered as breaking point, it has been common that many phases have begun sooner (particularly spring phases), while abiotic autumn phases have been characterized by late years.</p><p>Study gives an overview aboutclimate change (also climate type shift) impacts on ecosystems in Latvia, particularly to forest and semi-natural grasslands and temporal and spatial changes of vegetation structure and distribution areas.</p><p>This study was carried out within the framework of the Impact of Climate Change on Phytophenological Phases and Related Risks in the Baltic Region (No. 1.1.1.2/VIAA/2/18/265) ERDF project and the Climate change and sustainable use of natural resources institutional research grant of the University of Latvia (No. AAP2016/B041//ZD2016/AZ03).</p><p>Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M. and Jones, P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets, J. Geophys. Res. Atmos., 123(17), 9391–9409, doi:10.1029/2017JD028200, 2018.</p><p>Kalvāne, G. and Kalvāns, A.(2021): Phenological trends of multi-taxonomic groups in Latvia, 1970-2018, Int. J. Biometeorol., doi:https://doi.org/10.1007/s00484-020-02068-8, 2021.</p>


2021 ◽  
Author(s):  
Enza Di Tomaso ◽  
Jerónimo Escribano ◽  
Paul Ginoux ◽  
Sara Basart ◽  
Francesca Macchia ◽  
...  

<p>Desert dust is the most abundant aerosol by mass residing in the atmosphere. It plays a key role in the Earth’s system by influencing the radiation balance, by affecting cloud formation and cloud chemistry, and by acting as a fertilizer for the growth of phytoplankton and for soil through its deposition over the ocean and land.</p><p>Due to the nature of its emission and transport, atmospheric dust concentrations are highly variable in space and time and, therefore, require a continuous monitoring by measurements. Dust observations are best exploited by being combined with model simulations for the production of analyses and reanalyses, i.e., complete and consistent four dimensional reconstructions of the atmosphere. Existing aerosol (and dust) reanalyses for the global domain have been produced by total aerosol constraint and at relatively coarse spatial resolution, while regional reanalyses exclude some of the regions containing the major sources of desert dust in Northern Africa and the Middle East.</p><p>We present here a 10-year reanalysis data set of desert dust at a horizontal resolution of 0.1°, and which covers the domain of Northern Africa, the Middle East and Europe. The reanalysis has been produced by assimilating in the MONARCH chemical weather prediction system (Di Tomaso et al., 2017) satellite retrievals over dust source regions with specific dust observational constraint (Ginoux et al., 2012; Pu and Ginoux, 2016).</p><p>Furthermore, we describe its evaluation in terms of data assimilation diagnostics and comparison against independent observations. Statistics of analysis departures from assimilated observations prove the consistency of the data assimilation system showing that the analysis is closer to the observations than the first-guess. Temporal mean of analysis increments show that the assimilation led to an overall reduction of dust with pattern of systematic corrections that vary with the seasons, and can be linked primarily to misrepresentation of source strength.</p><p>Independent evaluation of the analysis with AERONET observations indicates that the reanalysis data set is highly accurate, and provides therefore a reliable historical record of atmospheric desert dust concentrations in a recent decade.</p><p><strong>References</strong></p><p>Di Tomaso, E., Schutgens, N. A. J., Jorba, O., and Pérez García-Pando, C. (2017): Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0, Geosci. Model Dev., 10, 1107-1129.</p><p>Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. and Zhao, M. (2012): Global-Scale Attribution of Anthropogenic and Natural Dust Sources and Their Emission Rates Based on Modis Deep Blue Aerosol Products. Rev Geophys 50.</p><p>Pu, B., and Ginoux, P. (2016). The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria. Atmospheric Chemistry and Physics, 16(21), 13431-13448.</p><p><strong>Acknowledgements </strong></p><p>The authors acknowledge the DustClim project which is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (435690462); PRACE (eDUST/eFRAGMENT1/eFRAGMENT2), RES (AECT-2020-3-0013/AECT-2019-3-0001/AECT-2020-1-0007) for awarding access to MareNostrum at BSC and for technical support.</p>


Sign in / Sign up

Export Citation Format

Share Document