Vulnerability of buildings to wildfire

Author(s):  
Celine Garlichs ◽  
Michalis Diakakis ◽  
Spyridon Mavroulis ◽  
Sven Fuchs ◽  
Maria Papathoma-Köhle

<p>Recent events worldwide have clearly shown that wildfires pose a serious threat to people and buildings located in the WUI (Wildland-Urban-Interface). In Europe, due to climate change, wildfires are expected to continue affecting areas not only in the Mediterranean but also in other European regions (e.g. alpine and Scandinavian context).  A wide range of tools is available for the assessment of physical vulnerability of buildings to different hazard types including floods, landslides and earthquakes. Yet, to date, vulnerability of buildings to wildfire still remains under-researched. Research gaps in this respect are pointed out in this study and a well-established approach for vulnerability assessment of buildings already used for tsunamis and dynamic flooding is adapted in order to be used for wildfires. The method is based on the development of a vulnerability index using building characteristics (indicators) that contribute to wildfire vulnerability, including construction material, surroundings, building design and surrounding vegetation. The index may be used as a basis for strategies for vulnerability reduction (reinforcement of buildings, building codes), evacuation planning, insurance purposes and resilient reconstruction of affected areas. Preliminary results of an application in Mati (Attica, Greece) based on the data of a wildfire occurred in July 2018 resulting in the death of more than 100 people are presented</p>

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Raed I. Bourisli ◽  
Adnan A. AlAnzi

This work aims at developing a closed-form correlation between key building design variables and its energy use. The results can be utilized during the initial design stages to assess the different building shapes and designs according to their expected energy use. Prototypical, 20-floor office buildings were used. The relative compactness, footprint area, projection factor, and window-to-wall ratio were changed and the resulting buildings performances were simulated. In total, 729 different office buildings were developed and simulated in order to provide the training cases for optimizing the correlation’s coefficients. Simulations were done using the VisualDOE TM software with a Typical Meteorological Year data file, Kuwait City, Kuwait. A real-coded genetic algorithm (GA) was used to optimize the coefficients of a proposed function that relates the energy use of a building to its four key parameters. The figure of merit was the difference in the ratio of the annual energy use of a building normalized by that of a reference building. The objective was to minimize the difference between the simulated results and the four-variable function trying to predict them. Results show that the real-coded GA was able to come up with a function that estimates the thermal performance of a proposed design with an accuracy of around 96%, based on the number of buildings tested. The goodness of fit, roughly represented by R2, ranged from 0.950 to 0.994. In terms of the effects of the various parameters, the area was found to have the smallest role among the design parameters. It was also found that the accuracy of the function suffers the most when high window-to-wall ratios are combined with low projection factors. In such cases, the energy use develops a potential optimum compactness. The proposed function (and methodology) will be a great tool for designers to inexpensively explore a wide range of alternatives and assess them in terms of their energy use efficiency. It will also be of great use to municipality officials and building codes authors.


2021 ◽  
Author(s):  
Leah R. Handwerger ◽  
Jennifer R. Runkle ◽  
Ronald Leeper ◽  
Elizabeth Shay ◽  
Kara Dempsey ◽  
...  

Abstract Appalachia is a cultural region in the southern and central Appalachian Mountains that lags behind the nation in several social vulnerability indicators. Climate projections over this region indicate that precipitation variability will increase in both severity and frequency in future decades, suggesting that the occurrence of natural hazards related to hydroclimate extremes will also increase. The objective of this study was to investigate the spatiotemporal patterns of drought and precipitation and determine how trends overlap with vulnerable communities across Appalachia. The study utilized trend analysis through Mann-Kendall calculations and a Social Vulnerability Index, resulting in a bivariate map that displays areas most susceptible to adverse effects from hydroclimate extremes. Results show the southwestern portion of the region as most vulnerable to increased precipitation, and the central-southeast most vulnerable to an increase in drought-precipitation variability. This study is among the first to utilize the boundaries defined by the Appalachian Regional Commission from a climatological perspective, allowing findings to reach audiences outside the scientific community and bring more effective mitigation strategies that span from the local to federal levels.


2009 ◽  
Vol 9 (6) ◽  
pp. 2015-2026 ◽  
Author(s):  
F. Dall'Osso ◽  
M. Gonella ◽  
G. Gabbianelli ◽  
G. Withycombe ◽  
D. Dominey-Howes

Abstract. Australia is vulnerable to the impacts of tsunamis and exposure along the SE coast of New South Wales is especially high. Significantly, this is the same area reported to have been affected by repeated large magnitude tsunamis during the Holocene. Efforts are under way to complete probabilistic risk assessments for the region but local government planners and emergency risk managers need information now about building vulnerability in order to develop appropriate risk management strategies. We use the newly revised PTVA-3 Model (Dall'Osso et al., 2009) to assess the relative vulnerability of buildings to damage from a "worst case tsunami" defined by our latest understanding of regional risk – something never before undertaken in Australia. We present selected results from an investigation of building vulnerability within the local government area of Manly – an iconic coastal area of Sydney. We show that a significant proportion of buildings (in particular, residential structures) are classified as having "High" and "Very High" Relative Vulnerability Index scores. Furthermore, other important buildings (e.g., schools, nursing homes and transport structures) are also vulnerable to damage. Our results have serious implications for immediate emergency risk management, longer-term land-use zoning and development, and building design and construction standards. Based on the work undertaken here, we recommend further detailed assessment of the vulnerability of coastal buildings in at risk areas, development of appropriate risk management strategies and a detailed program of community engagement to increase overall resilience.


BMJ Open ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. e019215 ◽  
Author(s):  
Azadeh Kamel Ghalibaf ◽  
Elham Nazari ◽  
Mahdi Gholian-Aval ◽  
Hamed Tabesh ◽  
Mahmood Tara

IntroductionTailoring health information to the needs of individuals has become an important part of modern health communications. Tailoring has been addressed by researchers from different disciplines leading to the emergence of a wide range of approaches, making the newcomers confused. In order to address this, a comprehensive overview of the field with the indications of research gaps, tendencies and trends will be helpful. As a result, a systematic protocol was outlined to conduct a scoping review within the field of computer-based health information tailoring.Methods and analysisThis protocol is based on the York’s five-stage framework outlined by Arksey and O’Malley. A field-specific structure was defined as a basis for undertaking each stage. The structure comprised three main aspects:system design,information communicationandevaluation. Five leading databases were searched: PubMed, Scopus, Science Direct, EBSCO and IEEE and a broad search strategy was used with less strict inclusion criteria to cover the breadth of evidence. Theoretical frameworks were used to develop the data extraction form and a rigorous approach was introduced to identify the categories from data. Several explanatory-descriptive methods were considered to analyse the data, from which some were proposed to be employed for the first time in scoping studies.Ethics and disseminationThis study investigates the breadth and depth of existing literature on computer-tailoring and as a secondary analysis, does not require ethics approval. We anticipate that the results will identify research gaps and novel ideas for future studies and provide direction to combine methods from different disciplines. The research findings will be submitted for publication to relevant peer-reviewed journals and conferences targeting health promotion and patient education.


2018 ◽  
Vol 931 ◽  
pp. 594-597
Author(s):  
Yu.S. Bagaiskov

The main criteria for evaluation of ceramic products’ properties are strength, structural and mechanical, and thermophysical properties. To produce ceramic composites with a wide range of structural, mechanical, strength, and performance properties depending on application, various additives (flux agents, sintering agents, fillers) and heat treatment processes are used. Studies to determine a rational mixture composition have been carried out. A multipurpose material, comprising particles of the basic chamotte filler (burned clay) with a bonding agent in the form of refractory clay from the Latnenskoye deposit with a field spar fluxing agent, an additional filler made of heat-resistant silicon carbide, and an adhesive component in the form of powdered dextrin, is suggested. According to the combination of its ensured parameters, the obtained ceramic material can be multipurpose. Its degree of porosity and permeability make the material filtering, sound-proofing, and heat-retaining; considering the low density, it can be used as a lightweight construction material.


2019 ◽  
Vol 945 ◽  
pp. 193-198 ◽  
Author(s):  
Igor V. Zhernovsky ◽  
Alla V. Cherevatova ◽  
Natalia Ivanovna Kozhukhova ◽  
Maya Sergeevna Osadchaya ◽  
D.A. Ksenofontov

Current trends in the field of construction material is focused on enhancement of sustainability of building materials and constructions urging on development of new types of inorganic binders and composites in order to meet the modern requirements of service performance and special properties. This research studied and demonstrated the opportunity to develop zero-cement heat-resisting granite-based nanostructured binder (GNB) using «green» technology production. XRD and DTA analyses demonstrated that the thermal exposure of GNB to wide range of temperatures of 20–1000 °C leads to such phase transformations in the binder as α-quartz to β-quartz transformation; amorphous alkali-aluminosilicate (gel) to crystal phase of Са-albite. The calculation of cell volumes characteristics for low-temperature (before thermal exposure) and high-temperature (after thermal exposure) phases was performed using following equation: where is concentration (by wt. %) of mineral phases;Viis unit cell volume of mineral phases, Å. The calculated ratios of unit cell volumes were close to 1 which ensures a structural stability of the GNB under thermal exposure and confirms its heat-resistant performance.


Author(s):  
Pavan K. Aninthaneni ◽  
Rajesh P. Dhakal

The most important structural parameter in the estimation of the seismic demand on a building is the natural period of the building’s fundamental/first mode of vibration. There are several existing empirical, analytical, and experimental methods which can be used to estimate the fundamental period of a building. The empirical equations prescribed in the building codes are simple, but they do not consider actual building properties, and are very approximate. On the other hand, analytical methods like Eigenvalue analysis and Rayleigh method are able to consider most of the structural parameters that are known to affect the period of a building. Nevertheless, the analytical methods require considerable effort and expertise; often requiring structural analysis software’s to estimate the fundamental period of a building. In this paper, a generic method is developed to estimate the fundamental period of regular frame buildings and a simple yet reliable equation is proposed. The equation is derived using the basic concept of MacLeod’s method for estimation of roof/top deflection of a frame building, which is modified to more accurately predict the lateral stiffness of moment resisting frames under triangular lateral force distribution typically used in seismic design and analysis of frame buildings. To verify the reliability and versatility of the developed equation, the fundamental periods predicted are compared with the periods obtained from Eigenvalue analysis for a large number of low to medium rise RC frame buildings. The fundamental period predicted using the proposed equation is also verified using the period obtained using the Rayleigh method and measured in experimental tests. Since the proposed equation was found to closely predict the fundamental period, the results are used to study the limitations of the empirical equations prescribed in building codes. The applicability of the proposed equation to predict the fundamental period of low to medium rise frame buildings with minor irregularity is also investigated, and it was found that the proposed equation can be used for slightly irregular frame buildings without inducing any additional error. The proposed equation is simple enough to be implemented into building design codes and can be readily used by practicing engineers in design of new buildings as well as assessment of existing buildings.


2020 ◽  
Author(s):  
Susana Pereira ◽  
Pedro P. Santos ◽  
José L. Zêzere ◽  
Alexandre O. Tavares ◽  
Ricardo A.C. Garcia ◽  
...  

<p>Nowadays it is essential to develop new methodologies to quantify landslide risk, which contribute to the landslide risk management at the municipal level. In this work, a Landslide Risk Index (LRI) is computed for the 278 Portuguese municipalities, which are ranked and characterized according the landslide risk drivers. Landslide risk index was assessed as the product of hazard, exposure and physical vulnerability of buildings scores.</p><p>The landslide hazard includes the landslide susceptibility evaluated at the national scale using the Information Value method and further validated with prediction-rate curves (Zêzere et al., 2018). Additionally, a weather and climate events index (WCE) was computed using a multicriteria analysis that included the annual frequency of circulation weather types associated to damaging landslides and an extreme precipitation susceptibility index (Santos et al., 2020). Exposure  was evaluated for each municipality using the population density (inhabitants/km<sup>2</sup>) and the road density (km/km<sup>2</sup>). The physical vulnerability of the buildings was computed using four statistical variables obtained from the official Census: (i) construction technique and construction materials, (ii) reinforced structure, (iii) number of floors and (iv) conservation status. Variable classes were empirically weighted.</p><p>Exposure is the main driving force of LRI in the metropolitan areas of Lisbon and Porto, whereas the hazard is more relevant in the NW municipalities and the physical vulnerability is the major driving force in the south of the country.</p><p>For each municipality a landslide risk profile was built, based on the combination of the three driving forces, which can be compared and ranked. Therefore, the landslide risk management strategies at the municipal level must be adjusted to the corresponding dominant drivers in order to reduce landslide impacts.</p><p>Municipalities with high values of hazard are sensitive to changes on the other risk components, which should draw additional efforts concerning land use management and emergency planning. On the exposure, planning instruments should consider the negative effects on LRI from measures that promote the expansion of people and economic activities towards hazardous zones. On the physical vulnerability, public policies should be aware of the increasing physical vulnerability of buildings in time due to age and lack of maintenance and to public works involving embankments and earthworks.</p><p>This work contributes to context-oriented strategies of landslide risk management that still lacks in most of the national and regional levels of risk governance processes.</p><p> </p><p>Acknowledgements:</p><p>This work was financed by national funds through FCT—Portuguese Foundation for Science and Technology, I.P., under the framework of the project BeSafeSlide—Landslide Early Warning soft technology prototype to improve community resilience and adaptation to environmental change (PTDC/GES-AMB/30052/2017) and by the Research Unit UIDB/00295/2020. Pedro Pinto Santos is funded by FCT (project reference CEEIND/00268/2017).</p><p> </p><p>References:</p><p>Santos, P.P.; Pereira, S.; Zêzere, J.L.; Tavares, A.O.; Reis, E.; Garcia, R.A.C.; Oliveira, S.C. (2020) A comprehensive approach to understanding flood risk drivers at the municipal level. Journal of Environmental Management (in press).</p><p>Zêzere, J.L., Oliveira, S.C., Pereira, S., Garcia, R.A.C., Melo, R., Vaz, T., Tavares, A.O., Bateira, C., Santos, P.P., Meneses, B., Quaresma, I. (2018) Construction of a National Landslide Susceptibility Map for Portugal. Geophysical Research Abstracts, Vol. 20, EGU2018-4541.</p>


Solar Energy ◽  
2002 ◽  
Author(s):  
Andy Walker ◽  
Norm Weaver ◽  
Gregory Kiss ◽  
Doug Balcomb ◽  
Melinda Becker-Humphry

A new version of the ENERGY-10 computer program simulates the performance of photovoltaic systems, in addition to a wide range of opportunities to improve energy efficiency in buildings. This paper describes two test cases in which the beta release of ENERGY-10 version 1.4 was used to evaluate energy efficiency and building-integrated photovoltaics (BIPV) for two Federal building projects: a 16,000-ft2 (1,487 m2) office and laboratory building at the Smithsonian Astrophysical Laboratory in Hilo, Hawaii, and housing for visiting scientists [three 1400-ft2 (130 m2) and three 1564-ft2 (145 m2) houses] at the Smithsonian Environmental Research Center in Edgewater, Maryland. The paper describes the capabilities of the software, the method in which ENERGY-10 was used to assist in the design, and a synopsis of the results. The results indicate that ENERGY-10 is an effective tool for evaluating BIPV options very early in the building design process. By simulating both the building electrical load and simultaneous PV performance for each hour of the year, the ENERGY-10 program facilitates a highly accurate, integrated analysis.


2016 ◽  
Vol 6 (1) ◽  
pp. 1-39
Author(s):  
Sankalp Pratap ◽  
Biswatosh Saha

Subject area Strategic Management. Study level/applicability The case is designed for a) MBA students b) Short-duration executive MBA courses. Case overview The case refers to India’s leading steel company Tata Steel. Tata Tiscon, the steel rebar brand, is the organization’s leading retail brand. The case chronicles the period between the birth of the retail brand in the year 2000, its dramatic rise and dominance, to the end of 2013 when some of its initiatives had failed. Tata Tiscon was established as a pan Indian brand on the dint of a distribution network comprising 33 distributors and over 2000 retailers, many of them exclusive to the brand. The brand spawned a series of innovation in the category like “selling by piece”, fixed price concept and “free” home delivery. Together with its channel partners, the company achieved dramatic success which was reflected in its leading market share coupled with significant price premium in a category where price had traditionally being the only selling pitch. After 2010, the company saw an emerging challenge in the form of a new business model, where some companies were gearing to provide the complete portfolio of construction material including cement, steel, etc., and a turnkey construction solution for house builders. Tata Tiscon responded by attempting to enter the service space by launching a building design solution and later a construction supervision solution. Both of these initiatives failed. The protagonist of the case is Mr Keshav Viswanath (Chief of Marketing for retail business at Tata Steel), who is concerned with the failures of these key initiatives and is wondering how to ensure the “leader” status of Tata Tiscon in coming years. Expected earning outcomes The students are expected to understand how a core strategy like differentiation is implemented successfully in “practice”; understand the exploitation–exploration dichotomy in an organization; appreciate difference between radical innovation (based on new organizational routines, new business partners and new relationships) and incremental innovation based on fine tuning of existing organizational routines and relationships. Supplementary materials Rebar production: www.youtube.com/watch?v=J6n9sci8j-8; Tata TISCON AV: www.youtube.com/watch?v=89kOUsbnaYQ; TQM – The Toyota Way: www.youstube.com/watch?v=qf3gdrIMxRw; Disruptive vs. Incremental Innovation: www.youtube.com/watch?v=kOOL_GiaLTo; Approach to innovation is dead wrong: www.youtube.com/watch?v=pii8tTx1UYM Subject code CSS 11: Strategy.


Sign in / Sign up

Export Citation Format

Share Document