Analysis of bioaerosol emission patterns of tropical fungi in the Amazon region

Author(s):  
Sebastian Brill ◽  
Nina Löbs ◽  
Cybelli G. G. Barbosa ◽  
Juliana F. de Camargo ◽  
David Walter ◽  
...  

<p>Primary biological aerosol particles (PBAP), better known as bioaerosols, are considered to play a role in atmospheric and climate influencing processes. Fungal spores, as a part of PBAP, account for a large fraction of coarse particulate matter in some ecosystems, as for example the Amazon rainforest. In such highly diverse ecosystems, fungi play key roles as mycorrhizal fungi for nutrient uptake of plants and as decomposers in nutrient and water cycling, and thus their community structure strongly influences local ecosystem conditions. Despite this relevance, fungal spore emission patterns under natural conditions and the corresponding triggering factors are not well characterized, yet. In this study, we present a laboratory and field measurement techniques to quantify and analyze bioaerosol emission patterns and the effect of precipitation on fungal spore emission.</p><p>For investigations under field conditions, the particle emissions of fungi (Agaricomycetes) were characterized at their site of growth in the field using an optical particle sizer and a data logger. Particle concentrations and their size distribution (0.3 to 10 µm), as well as the microclimatic temperature and humidity were measured in close vicinity to the fungal fruiting body. Generally, field measurements were performed over a time span of 24 h with some exceptions ranging up to 6 days. For laboratory measurements, a newly developed glass chamber system was used to measure particle emissions of fungi under controlled conditions. During the chamber measurements, the humidity and temperature conditions were varied and recorded with a datalogger. To simulate precipitation events, the fruiting bodies were sprayed with water between measurement sections and particle emissions were monitored before and after moistening.</p><p>First measurements of fungi under field and lab conditions showed that high humidity values were necessary to trigger fungal spore emissions. In many cases, precipitation events and the moisture status of the fungus and substrate had an influence on spore release. Based on the results of 47 field measurements, it was possible to establish a function simulating the spore emission patterns of fungi during their diurnal emission cycle. During field measurements, an emission of up to 55,000 spores per second was recorded directly at the fungus, which, according to the function, may correspond to emissions of up to 2.8 x 10<sup>9</sup> spores per day. Chamber measurements showed that spore emissions generally started 2-3 hours after artificial moistening.</p><p>Increasing deforestation is expected to cause drier conditions and to increase the possibility of droughts, which will have an impact on the species composition and quantity of fungi in the Amazon. A combination of our field and lab emission data is expected to allow a new interpretation of bioaerosol emissions and composition in the Amazon, which can be used as a baseline to analyze the potential relevance of bioaerosols in regional atmosphere and climate processes.</p>

2020 ◽  
Vol 13 (1) ◽  
pp. 153-164 ◽  
Author(s):  
Nina Löbs ◽  
Cybelli G. G. Barbosa ◽  
Sebastian Brill ◽  
David Walter ◽  
Florian Ditas ◽  
...  

Abstract. Bioaerosols are considered to play a relevant role in atmospheric processes, but their sources, properties, and spatiotemporal distribution in the atmosphere are not yet well characterized. In the Amazon Basin, primary biological aerosol particles (PBAPs) account for a large fraction of coarse particulate matter, and fungal spores are among the most abundant PBAPs in this area as well as in other vegetated continental regions. Furthermore, PBAPs could also be important ice nuclei in Amazonia. Measurement data on the release of fungal spores under natural conditions, however, are sparse. Here we present an experimental approach to analyze and quantify the spore release from fungi and other spore-producing organisms under natural and laboratory conditions. For measurements under natural conditions, the samples were kept in their natural environment and a setup was developed to estimate the spore release numbers and sizes as well as the microclimatic factors temperature and air humidity in parallel to the mesoclimatic parameters net radiation, rain, and fog occurrence. For experiments in the laboratory, we developed a cuvette to assess the particle size and number of newly released fungal spores under controlled conditions, simultaneously measuring temperature and relative humidity inside the cuvette. Both approaches were combined with bioaerosol sampling techniques to characterize the released particles using microscopic methods. For fruiting bodies of the basidiomycetous species, Rigidoporus microporus, the model species for which these techniques were tested, the highest frequency of spore release occurred in the range from 62 % to 96 % relative humidity. The results obtained for this model species reveal characteristic spore release patterns linked to environmental or experimental conditions, indicating that the moisture status of the sample may be a regulating factor, whereas temperature and light seem to play a minor role for this species. The presented approach enables systematic studies aimed at the quantification and validation of spore emission rates and inventories, which can be applied to a regional mapping of cryptogamic organisms under given environmental conditions.


2019 ◽  
Author(s):  
Nina Löbs ◽  
Cybelli G. G. Barbosa ◽  
Sebastian Brill ◽  
David Walter ◽  
Florian Ditas ◽  
...  

Abstract. Bioaerosols are considered to play a relevant role in atmospheric processes, but their sources, properties and spatio-temporal distribution in the atmosphere are not yet well characterized. In the Amazon Basin, primary biological aerosol particles (PBAP) account for a large fraction of coarse particulate matter, and fungal spores are among the most abundant PBAP there as well as in other vegetated continental regions. Furthermore, PBAP could also be important ice nuclei in Amazonia. Measurement data on the release of fungal spores under natural conditions are, however, sparse. Here we present an experimental approach to analyze and quantify the spore release from fungi and other spore producing organisms under natural and laboratory conditions. For measurements under natural conditions, the samples were kept in their natural environment and a setup was developed to estimate the spore release numbers and sizes together with the microclimatic factors temperature and air humidity, as well as the mesoclimatic parameters, net radiation, rain, and fog occurrence. For experiments in the laboratory, we developed a cuvette to assess the particle size and number of newly released fungal spores under controlled conditions, simultaneously measuring temperature and relative humidity inside the cuvette. Both approaches were combined with bioaerosol sampling techniques to characterize the released particles by microscopic methods. For fruiting bodies of the basidiomycetous species, Rigidoporus microporus, the model species for which these techniques were tested, the highest frequency of spore release occurred in the range of 62 and 96 % relative humidity. The results obtained for this model species reveal characteristic spore release patterns linked to environmental or experimental conditions, indicating that the moisture status of the sample may be a regulating factor, while temperature and light seem to play a minor role, at least for this species. The presented approach enables systematic studies aimed at the quantification and validation of spore emission rates and inventories, which can be applied to a regional mapping of cryptogamic organisms under given environmental conditions.


Botany ◽  
2014 ◽  
Vol 92 (4) ◽  
pp. 287-293 ◽  
Author(s):  
Catherine A. Gehring ◽  
Baoming Ji ◽  
Sarah Fong ◽  
Thomas G. Whitham

Interactions among plants and soil microbes can significantly influence plant communities, yet we understand little about how hybridization of plant species might alter these interactions. In addition, few studies have explored the effects of different components of soil microbial communities on plant performance. We tested for feedbacks between soil microbes within a Populus hybridizing system using approaches that allowed us to isolate the effects of arbuscular mycorrhizal fungi (AMF) and root endophytes. We found significant differences among the arbuscular mycorrhizal (AM) fungal spore communities cultured from Populus angustifolia James, Populus fremontii S. Watson, and their F1 hybrids. Populus angustifolia cuttings grew 40% larger when inoculated with AM fungal spores from F1 hybrids than with spores from P. fremontii, while growth with spores from P. angustifolia was intermediate. However, parental and hybrid inocula promoted growth equally when soil inoculum was used. Roots inoculated with AM fungal spores alone were colonized principally by AMF, while those inoculated with soil were colonized mostly by dark septate endophytes. These results indicate that genetic variation among hybridizing plant species can influence both microbial communities and their interactions with host plants, but these effects depend upon the type of microbe. Furthermore, our results suggest that interactions among fungi during root colonization may alter the composition and function of the plant microbiome.


Author(s):  
Raghdaa K. Fayad ◽  
Roda F. Al-Thani ◽  
Fatima A. Al-Naemi ◽  
Mohammed H. Abu-Dieyeh

This research was conducted to investigate the dynamics of airborne fungi using viable culture collection and in respect to different abiotic variables, including seasonal and intra-diurnal variations. A gravimetric method was used to sample airborne fungal deposition on potato dextrose agar plates on alternate days, for a year between April 2015 to March 2016. From 176 settle plate exposures, a total of 1197 mould and 283 yeast colony-forming units (CFU), 21 genera and 62 species were retrieved. The highest fungal spore count was recorded in February 2016, whereas the lowest count occurred in August 2015. The main constituents of the fungal airspora were attributed to Cladosporium (60.2%), Aspergillus (10.4%), Fusarium (9.4%), Alternaria (8.5%), and Ganoderma spp. (2.3%). Temperature was negatively correlated with total colony count (r = −0.231, p ≤ 0.05) or species richness (r = −0.267, p ≤ 0.001), while wind speed was positively correlated with total colony count (r = 0.484, p ≤ 0.001) or species richness (r = 0.257, p ≤ −0.001). The highest dispersal of fungal spores was obtained at 18:00, whereas the lowest fungal spores release was recorded at 00:00 (midnight). There were no significant differences in species composition and richness of the airborne fungal population between two study sites, the Industrial area and Qatar University Campus. The count of Alternaria spp. and Fusarium spp. were significantly higher at the Industrial area site, which corresponds to a higher CO2 level than the Qatar University site. This study lays the foundation for future work to assess the implications of such aeromycological data on public health.


1981 ◽  
Vol 59 (6) ◽  
pp. 1056-1060 ◽  
Author(s):  
Sharon L. Rose

Endemic plants of the Sonoran Desert of Baja California were sampled for mycorrhizal associations. Eight of the 10 plant species examined were colonized by vesicular–arbuscular (VA) mycorrhizal fungi. Soil sievings revealed chlamydospores of three VA mycorrhizal Glomus spp.; G. microcarpus, G. fasciculatus, and G. macrocarpus. At the time of sampling, the populations of VA fungal spores in the soil were low, with one to five chlamydospores per 100 g soil sample.


2018 ◽  
Author(s):  
Elizabeth Forde ◽  
Martin Gallagher ◽  
Virginia Foot ◽  
Roland Sarda-Esteve ◽  
Ian Crawford ◽  
...  

Abstract. Primary biological aerosol particles (PBAP) are an abundant subset of atmospheric aerosol particles which comprise viruses, bacteria, fungal spores, pollen, and fragments such as plant and animal debris. The abundance and diversity of these particles remain poorly constrained, causing significant uncertainties for modelling scenarios and for understanding the potential implications of these particles in different environments. PBAP concentrations were studied at four different sites in the United Kingdom (Weybourne, Davidstow, Capel Dewi, and Chilbolton) using an ultra-violet light induced fluorescence (UV-LIF) instrument, the Wideband Integrated Bioaerosol Spectrometer (WIBS), versions 3 and 4. Using hierarchical agglomerative cluster (HAC) analysis, particles were statistically discriminated between. Fluorescent particles and clusters were then analysed by assessing their diurnal variation and their relationship to the meteorological variables, temperature and relative humidity, and wind speed and direction. Using local land cover types, sources of the suspected fluorescent particles and clusters were then identified. Most sites exhibited a wet discharged fungal spore dominance, with the exception of one site, Davidstow, which had higher concentrations of bacteria, suggested to result from the presence of a local dairy factory. Differences were identified as to the sources of wet discharged fungal spores, with particles originating from arable and horticultural land at Chilbolton, and improved grassland areas at Weybourne. Total fluorescent particles at Capel Dewi were inferred to comprise two sources, with bacteria originating from the broadleaf and coniferous woodland and wet discharged fungal spores from nearby improved grassland areas, similar to Weybourne. The use of HAC and a higher fluorescence threshold (9SD) produced clusters which were considered to be biological following the complete analysis. More knowledge of the reaction of speciated biological particles to differences in meteorology, such as relative humidity and temperature would aid characterisation studies such as this.


2015 ◽  
Vol 45 (4) ◽  
pp. 943-965 ◽  
Author(s):  
Peter Sutherland ◽  
W. Kendall Melville

AbstractWave breaking removes energy from the surface wave field and injects it into the upper ocean, where it is dissipated by viscosity. This paper presents an investigation of turbulent kinetic energy (TKE) dissipation beneath breaking waves. Wind, wave, and turbulence data were collected in the North Pacific Ocean aboard R/P FLIP, during the ONR-sponsored High Resolution Air-Sea Interaction (HiRes) and Radiance in a Dynamic Ocean (RaDyO) experiments. A new method for measuring TKE dissipation at the sea surface was combined with subsurface measurements to allow estimation of TKE dissipation over the entire wave-affected surface layer. Near the surface, dissipation decayed with depth as z−1, and below approximately one significant wave height, it decayed more quickly, approaching z−2. High levels of TKE dissipation very near the sea surface were consistent with the large fraction of wave energy dissipation attributed to non-air-entraining microbreakers. Comparison of measured profiles with large-eddy simulation results in the literature suggests that dissipation is concentrated closer to the surface than previously expected, largely because the simulations did not resolve microbreaking. Total integrated dissipation in the water column agreed well with dissipation by breaking for young waves, (where cm is the mean wave frequency and is the atmospheric friction velocity), implying that breaking was the dominant source of turbulence in those conditions. The results of these extensive measurements of near-surface dissipation over three field experiments are discussed in the context of observations and ocean boundary layer modeling efforts by other groups.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
James D’Souza ◽  
Bernard Felinov Rodrigues

Seasonal dynamics of arbuscular mycorrhizal (AM) fungal community composition in three common mangrove plant species, namely, Acanthus ilicifolius, Excoecaria agallocha, and Rhizophora mucronata, from two sites in Goa, India, were investigated. In all three species variation in AM fungal spore density was observed. Maximum spore density and AM species richness were recorded in the premonsoon season, while minimum spore density and richness were observed during monsoon season at both sites. A total of 11 AM fungal species representing five genera were recorded. Acaulospora laevis was recorded in all seasons at both sites. Multivariate analysis revealed that season and host coaffected AM spore density and species richness with the former having greater influence than the latter.


2020 ◽  
Vol 18 ◽  
pp. 17-22
Author(s):  
Fabian T. Faul ◽  
Hans-Jürgen Steiner ◽  
Thomas F. Eibert

Abstract. Near-field measurements are commonly performed in anechoic chambers which limits the flexibility of the measurements and requires high precision equipment to achieve exact results. In this contribution, we investigate a simple near-field measurement setup which does not use any sophisticated positioning system nor operates in a controlled environment. Instead, the probe antenna is moved by an operator person while the probe position is measured by a laser tracker. This implies that the measurement results will have a higher error level in comparison with antenna chamber measurements. However, excellent error levels are not always necessary, especially when it comes to on-site testing of the principle functionality of antennas. Measurement results are shown to illustrate the performance of the system.


1974 ◽  
Vol 52 (5) ◽  
pp. 953-958 ◽  
Author(s):  
William C. Elsik ◽  
Jan Jansonius

Ctenosporites, Granatisporites, and Pesavis are described as new form genera of fossil fungal spores and spore-like fossils; Striadiporites and Pluricellaesporites are emended. Pesavis and Ctenosporites are geographically restricted to the northwest Pacific and Arctic region. Granatisporites is described to facilitate the classification of fungal spore types ubiquitous over at least the Western Hemisphere.


Sign in / Sign up

Export Citation Format

Share Document