Insight into municipal solid waste fly ash (MSWFA) heavy metals speciation by selective extractions and geochemical modelling

Author(s):  
Davide Bernasconi ◽  
Caterina Caviglia ◽  
Enrico Destefanis ◽  
Linda Pastero ◽  
Costanza Bonadiman ◽  
...  

<p>Nowadays municipal solid waste incineration (MSWI) has become a widespread and consolidated technology for MSW treatment all over the world. Indeed, it allows to reach up to 90% of waste volume reduction, while also producing energy. However, the incineration process has some drawbacks, one of which is the production of different residues that must be disposed of. Specifically, particular attention must be paid to fly ash (FA), which generally represents one of the most dangerous residues. FA is collected by the flue gas purification system and counts for around the 5% w/w of total incinerated waste. MSWI FA is regulated as a hazardous waste, mainly due to high concentrations of heavy metals (Pb, Cr, Zn, Cd) and soluble salts (chlorides and sulfates). Moreover, the average size of FA particles can be as low as 50-20 µm, thus determining a high surface area, which can increase toxic elements release into the environment. Therefore, many preliminary physicochemical stabilization treatments have been proposed over the years for their possible reuse as construction materials (e.g. water washing, thermal treatment, etc..). However, a detailed characterization of the residue in terms of heavy metals speciation is often overlooked. Indeed, this represents necessary information in order to understand and control the residue behavior in a reuse scenario and to design stabilization treatments as effective as possible.</p><p>In this work the analysis of heavy metals distribution and speciation of Turin MSW FA has been conducted, by combining both experimental treatments and geochemical modelling. In particular, a 4-step sequential extraction method has allowed to evaluate how heavy metals are distributed among four fractions with different physicochemical properties and, then, to deduct preliminary considerations about their leaching availability. In addition, pH-dependant leaching tests coupled by geochemical modelling using Virtual MINTEQ software has provided a more detailed insight into heavy metals speciation, by proposing possible phases which are often not detected by bulk analytical techniques. Finally, a general assessment of the hazardousness of Turin FA is discussed.</p>

2021 ◽  
Vol 13 (2) ◽  
pp. 535
Author(s):  
Jing Gao ◽  
Tao Wang ◽  
Jie Zhao ◽  
Xiaoying Hu ◽  
Changqing Dong

Melting solidification experiments of municipal solid waste incineration (MSWI) fly ash were carried out in a high-temperature tube furnace device. An ash fusion temperature (AFT) test, atomic absorption spectroscopy (AAS), scanning electron microscope (SEM), and X-ray diffraction (XRD) were applied in order to gain insight into the ash fusibility, the transformation during the melting process, and the leaching behavior of heavy metals in slag. The results showed that oxide minerals transformed into gehlenite as temperature increased. When the temperature increased to 1300 °C, 89 °C higher than the flow temperature (FT), all of the crystals transformed into molten slag. When the heating temperatures were higher than the FT, the volatilization of the Pb, Cd, Zn, and Cu decreased, which may have been influenced by the formation of liquid slag. In addition, the formation of liquid slag at a high temperature also improved the stability of heavy metals in heated slag.


2020 ◽  
Vol 10 (17) ◽  
pp. 6075
Author(s):  
Ahmad Assi ◽  
Fabjola Bilo ◽  
Alessandra Zanoletti ◽  
Laura Borgese ◽  
Laura Eleonora Depero ◽  
...  

This study presents an innovative stabilization method of fly ash derived from co-combustion of municipal solid waste and sewage sludge. Bottom ash, obtained from the same process, is used as a stabilizing agent. The stabilization method involved the use of two other components—flue gas desulfurization residues and coal fly ash. Leaching tests were performed on stabilized samples, aged in a laboratory at different times. The results reveal the reduction of the concentrations of heavy metals, particularly Zn and Pb about two orders of magnitude lower with respect to fly ash. The immobilization of heavy metals on the solid material mainly depends on three factors—the amount of used ash, the concentrations of Zn and Pb in as-received fly ash and the pH of the solution of the final materials. The inert powder, obtained after the stabilization, is a new eco-material, that is promising to be used as filler in new sustainable composite materials.


Sign in / Sign up

Export Citation Format

Share Document