Evaluation of gridded near surface air temperature datasets across complex terrain 

Author(s):  
Çağrı Hasan Karaman ◽  
Zuhal Akyurek

<p>Near surface air temperature is a key variable used in wide range of applications showing environmental conditions across the earth. Standard meteorological observations generally provide the best estimation with high accuracy over time for a small area of influence. However, considerable uncertainty arises when point measurements are extrapolated or interpolated over much larger areas. Satellite remote sensing data have emerged as a viable alternative or supplement to in situ observations due to their availability over vast ungauged regions. Thus, spatial patterns of air temperature can be derived from satellite remote sensing.</p><p>In this study, we evaluate the performance of several satellite-based products of near surface air temperature to determine the best product in estimating daily and monthly air temperatures. Era5 Land, SMAP Level 4, AgERA5, MERRA2 products are used with 1120 ground-based gauge stations for the period 2015-2019 over complex terrain and different climate classes according to Köppen-Geiger climate classification in Turkey. Moreover, several traditional and more sophisticated machine learning downscaling algorithms are applied to increase products’ spatial resolution. The agreement between ground observations and the different products and the downscaled temperature product is investigated using a set of commonly used statistical estimators of mean absolute error (MAE), correlation coefficient (CC), root-mean-square error (RMSE) and bias.</p><p>Performance analysis of satellite-based air temperature products with ground-based observations on monthly time series has shown that ERA5 Land and SMAP L4 products have similar capabilities. However, analysis on daily time series depicted that ERA5 Land is superior to SMAP L4 product. Results indicate that bicubic interpolation performs best on downscaling Era5 Land product daily time series. However, Random Forest algorithm is superior on monthly time series.</p>

2014 ◽  
Vol 11 (16) ◽  
pp. 4305-4320 ◽  
Author(s):  
S. T. Klosterman ◽  
K. Hufkens ◽  
J. M. Gray ◽  
E. Melaas ◽  
O. Sonnentag ◽  
...  

Abstract. Plant phenology regulates ecosystem services at local and global scales and is a sensitive indicator of global change. Estimates of phenophase transition dates, such as the start of spring or end of fall, can be derived from sensor-based time series, but must be interpreted in terms of biologically relevant events. We use the PhenoCam archive of digital repeat photography to implement a consistent protocol for visual assessment of canopy phenology at 13 temperate deciduous forest sites throughout eastern North America, and to perform digital image analysis for time-series-based estimation of phenophase transition dates. We then compare these results to remote sensing metrics of phenophase transition dates derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) sensors. We present a new type of curve fit that uses a generalized sigmoid function to estimate phenology dates, and we quantify the statistical uncertainty of phenophase transition dates estimated using this method. Results show that the generalized sigmoid provides estimates of dates with less statistical uncertainty than other curve-fitting methods. Additionally, we find that dates derived from analysis of high-frequency PhenoCam imagery have smaller uncertainties than satellite remote sensing metrics of phenology, and that dates derived from the remotely sensed enhanced vegetation index (EVI) have smaller uncertainty than those derived from the normalized difference vegetation index (NDVI). Near-surface time-series estimates for the start of spring are found to closely match estimates derived from visual assessment of leaf-out, as well as satellite remote-sensing-derived estimates of the start of spring. However late spring and fall phenology metrics exhibit larger differences between near-surface and remote scales. Differences in late spring phenology between near-surface and remote scales are found to correlate with a landscape metric of deciduous forest cover. These results quantify the effect of landscape heterogeneity when aggregating to the coarser spatial scales of remote sensing, and demonstrate the importance of accurate curve fitting and vegetation index selection when analyzing and interpreting phenology time series.


2015 ◽  
Vol 16 (1) ◽  
pp. 147-157 ◽  
Author(s):  
Sanaz Moghim ◽  
Andrew Jay Bowen ◽  
Sepideh Sarachi ◽  
Jingfeng Wang

Abstract A new algorithm is formulated for retrieving hourly time series of surface hydrometeorological variables including net radiation, sensible heat flux, and near-surface air temperature aided by hourly visible images from the Geostationary Operational Environmental Satellite (GOES) and in situ observations of mean daily air temperature. The algorithm is based on two unconventional, recently developed methods: the maximum entropy production model of surface heat fluxes and the half-order derivative–integral model that has been tested previously. The close agreement between the retrieved hourly variables using remotely sensed input and the corresponding field observations indicates that this algorithm is an effective tool in remote sensing of the earth system.


2011 ◽  
Vol 6 (1) ◽  
pp. 27-34 ◽  
Author(s):  
R. Hamdi ◽  
H. Van de Vyver

Abstract. In this letter, the Brussels's urban heat island (UHI) effect on the near-surface air temperature time series of Uccle (the national suburban recording station of the Royal Meteorological Institute of Belgium) was estimated between 1955 and 2006 during the summer months. The UHI of Brussels was estimated using both ground-based weather stations and remote sensing imagery combined with a land surface scheme that includes a state-of-the-art urban parameterization, the Town Energy Balance scheme. Analysis of urban warming based on the remote sensing method reveals that the urban bias on minimum air temperature is rising at a higher rate, 2.5 times (2.85 ground-based observed) more, than on maximum temperature, with a linear trend of 0.15 °C (0.19 °C ground-based observed) and 0.06 °C (0.06 °C ground-based observed) per decade respectively. The summer-mean urban bias on the mean air temperature is 0.8 °C (0.9 °C ground-based observed). The results based on remote sensing imagery are compatible with estimates of urban warming based on weather stations. Therefore, the technique presented in this work is a useful tool in estimating the urban heat island contamination in long time series, countering the drawbacks of an ground-observational approach.


2019 ◽  
Vol 12 (4) ◽  
pp. 74-95 ◽  
Author(s):  
Mikhail I. Varentsov ◽  
Mikhail Y. Grishchenko ◽  
Hendrik Wouters

This study compares three popular approaches to quantify the urban heat island (UHI) effect in Moscow megacity in a summer season (June-August 2015). The first approach uses the measurements of the near-surface air temperature obtained from weather stations, the second is based on remote sensing from thermal imagery of MODIS satellites, and the third is based on the numerical simulations with the mesoscale atmospheric model COSMO-CLM coupled with the urban canopy scheme TERRA_URB. The first approach allows studying the canopy-layer UHI (CLUHI, or anomaly of a near- surface air temperature), while the second allows studying the surface UHI (SUHI, or anomaly of a land surface temperature), and both types of the UHI could be simulated by the atmospheric model. These approaches were compared in the daytime, evening and nighttime conditions. The results of the study highlight a substantial difference between the SUHI and CLUHI in terms of the diurnal variation and spatial structure. The strongest differences are found at the daytime, at which the SUHI reaches the maximal intensity (up to 10°С) whereas the CLUHI reaches the minimum intensity (1.5°С). However, there is a stronger consistency between CLUHU and SUHI at night, when their intensities converge to 5–6°С. In addition, the nighttime CLUHI and SUHI have similar monocentric spatial structure with a temperature maximum in the city center. The presented findings should be taken into account when interpreting and comparing the results of UHI studies, based on the different approaches. The mesoscale model reproduces the CLUHI-SUHI relationships and provides good agreement with in situ observations on the CLUHI spatiotemporal variations (with near-zero biases for daytime and nighttime CLUHI intensity and correlation coefficients more than 0.8 for CLUHI spatial patterns). However, the agreement of the simulated SUHI with the remote sensing data is lower than agreement of the simulated CLUHI with in situ measurements. Specifically, the model tends to overestimate the daytime SUHI intensity. These results indicate a need for further in-depth investigation of the model behavior and SUHI–CLUHI relationships in general.


2012 ◽  
Vol 25 (15) ◽  
pp. 5292-5308 ◽  
Author(s):  
Xia Feng ◽  
Timothy DelSole ◽  
Paul Houser

Abstract This paper proposes a new method for assessing potential predictability of seasonal means using a single realization of daily time series. Potential predictability is defined as variability in seasonal means that exceeds the variability due to weather stochastic processes. The proposed method is based on analysis of covariance and accounts for autocorrelation in daily time series and uncertainties in statistical parameters. The method is applied to reanalyzed daily surface air temperature and detects significant potential predictability over the oceans and equatorial land areas. Potential predictability is weaker and varies significantly with season over extratropical land areas, with the fraction of potentially predictable variance rarely exceeding 60%. The proposed method also produces an estimate of the potentially predictable component of seasonal means, which can be used to investigate the relation between potential predictability and possible boundary forcings. The results are generally consistent with previous studies, although a more detailed study will be made in a future paper.


2017 ◽  
Vol 98 (4) ◽  
pp. 699-711 ◽  
Author(s):  
Qingxiang Li ◽  
Lei Zhang ◽  
Wenhui Xu ◽  
Tianjun Zhou ◽  
Jinfeng Wang ◽  
...  

Abstract Time series of global or regional average surface air temperature (SAT) are fundamental to climate change studies. A number of studies have developed several national and regional SAT series for China, but because of the diversity of the meteorological observational sites, the different quality control routines for processing the data, and the inconsistency of the statistical methods used, they differ in their long-term trends. This paper assesses the similarities and differences of the existing time series of the annual average SAT for China that are based upon historical meteorological observations since the 1900s. The results indicate that the China average is similar to the series for the Northern Hemisphere (NH) landmass, except that the initial warming of the NH series derived from the CRUTEM3/4 datasets, which represent global historical land surface air temperatures and near-surface air temperature anomalies over land, respectively, ends earlier (before the early 1940s) than in China’s series. A major difference among the existing China average time series is the 1940s warmth, a period when there were very few observations across the country because of World War II. The SAT anomalies for China during the 1930s to 1940s have been reduced by improved homogeneity assessment compared to previous estimates. The new improved time series is in better agreement with both the historical twentieth-century reanalysis data and the historical climate simulation of phase 5 of the Coupled Model Intercomparison Project (CMIP5) models. The new time series also shows the slowdown of the warming trend during the past 18 yr (1998–2015). The best estimate of a linear trend for increases in temperature with a 95% uncertainty range is 0.121° ± 0.009°C decade–1 for 1900–2015, indicating that the improved homogeneity assessment for China leads to a slightly greater trend than that based on raw data (0.107° ± 0.009°C decade–1).


2016 ◽  
Vol 48 (4) ◽  
pp. 673-684 ◽  
Author(s):  
Mario Córdova ◽  
Rolando Célleri ◽  
Cindy J. Shellito ◽  
Johanna Orellana-Alvear ◽  
Andrés Abril ◽  
...  

2019 ◽  
Vol 54 (1-2) ◽  
pp. 329-349 ◽  
Author(s):  
Ramchandra Karki ◽  
Shabeh ul Hasson ◽  
Udo Schickhoff ◽  
Thomas Scholten ◽  
Jürgen Böhner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document