The ionospheric response to the 2019 and 2021 Northern Hemisphere SSWs

Author(s):  
Tarique Adnan Siddiqui ◽  
Yosuke Yamazaki ◽  
Claudia Stolle

<p>Owing to the progress that have been made in understanding the vertical coupling mechanisms in the last decade, it is now well established that the thermosphere-ionosphere system under quiet geomagnetic conditions is highly sensitive to lower atmospheric forcing.  In this regard, the studies linking the upper atmosphere (mesosphere-lower thermosphere-ionosphere) variability and sudden stratospheric warming (SSW) events have been particularly important. The changes to atmospheric circulation due to SSW events modulate the spectrum of vertically upward propagating atmospheric waves (gravity waves, tides, and planetary waves) resulting in numerous changes in the state of the upper atmosphere. Much of our understanding about the upper atmospheric variability associated due to SSWs events have been gained by studying the 2008/2009 Northern Hemisphere (NH) SSW event, which occurred under extremely quiet geomagnetic conditions. Recently, two major NH SSW events in the winter of 2018/2019 and 2020/2021 occurred under similarly quiet geomagnetic conditions. In this work, both these SSW events have been simulated using Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X) and the low- and mid-latitude ionospheric response to both these SSW events will be presented.</p>

2020 ◽  
Author(s):  
Tarique Adnan Siddiqui ◽  
Yosuke Yamazaki ◽  
Claudia Stolle

<p>It is now well accepted that the ionosphere and thermosphere are sensitive to forcing from the lower atmosphere (troposphere-stratosphere) owing mainly to the progress that have been made in the last decade in understanding the vertical coupling mechanisms connecting these two distinct atmospheric regions. In this regard, the studies linking the upper atmosphere (mesosphere-lower thermosphere-ionosphere) variability due to sudden stratospheric warming (SSW) events have been particularly important. The change of stratospheric circulation due to SSW events modulate the spectrum of vertically upward propagating atmospheric waves (gravity waves, tides, and planetary waves) resulting in numerous changes in the state of the upper atmosphere. Much of our understanding about the upper atmospheric variability associated due to the SSWs events have been gained by studying the 2008/2009 SSW event, which occurred under extremely low solar flux conditions. Recently another SSW event in 2018/2019 occurred under similar low solar flux conditions. In this study we simulate both these SSW events using Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X) and present the findings by comparing the ionospheric and thermospheric response to both these SSW events. The tidal characteristics of the semidiurnal solar and lunar tides and the thermospheric composition for both these SSW events are compared and the causes of varying responses are investigated.</p>


2009 ◽  
Vol 66 (1) ◽  
pp. 173-186 ◽  
Author(s):  
H-L. Liu ◽  
F. Sassi ◽  
R. R. Garcia

Abstract It has been well established that the atmosphere is chaotic by nature and thus has a finite limit of predictability. The chaotic divergence of initial conditions and the predictability are explored here in the context of the whole atmosphere (from the ground to the thermosphere) using the NCAR Whole Atmosphere Community Climate Model (WACCM). From ensemble WACCM simulations, it is found that the early growth of differences in initial conditions is associated with gravity waves and it becomes apparent first in the upper atmosphere and progresses downward. The differences later become more profound on increasingly larger scales, and the growth rates of the differences change in various atmospheric regions and with seasons—corresponding closely with the strength of planetary waves. For example, in December–February the growth rates are largest in the northern and southern mesosphere and lower thermosphere and in the northern stratosphere, while smallest in the southern stratosphere. The growth rates, on the other hand, are not sensitive to the altitude where the small differences are introduced in the initial conditions or the physical nature of the differences. Furthermore, the growth rates in the middle and upper atmosphere are significantly reduced if the lower atmosphere is regularly reinitialized, and the reduction depends on the frequency and the altitude range of the reinitialization.


2006 ◽  
Vol 19 (22) ◽  
pp. 5934-5943 ◽  
Author(s):  
Jenny Brandefelt

Abstract The response of the atmospheric circulation to an enhanced radiative greenhouse gas forcing in a transient integration with a coupled global climate model is investigated. The spatial patterns of the leading modes of Northern Hemisphere atmospheric variability are shown to change in response to the enhanced forcing. An earlier study showed that the spatial patterns of the leading modes in the Southern Hemisphere changed in response to the enhanced forcing. These changes were associated with changes in the propagation conditions for barotropic Rossby waves. This is, however, not the case for the Northern Hemisphere, where the propagation conditions are unchanged. Other possible mechanisms for the changes in the spatial patterns of the leading modes are discussed.


2009 ◽  
Vol 9 (2) ◽  
pp. 595-614 ◽  
Author(s):  
A. N. Gruzdev ◽  
H. Schmidt ◽  
G. P. Brasseur

Abstract. This paper analyzes the effects of the solar rotational (27-day) irradiance variations on the chemical composition and temperature of the stratosphere, mesosphere and lower thermosphere as simulated by the three-dimensional chemistry-climate model HAMMONIA. Different methods are used to analyze the model results, including high resolution spectral and cross-spectral techniques. To force the simulations, an idealized irradiance variation with a constant period of 27 days (apparent solar rotation period) and with constant amplitude is used. While the calculated thermal and chemical responses are very distinct and permanent in the upper atmosphere, the responses in the stratosphere and mesosphere vary considerably in time despite the constant forcing. The responses produced by the model exhibit a non-linear behavior: in general, the response sensitivities (not amplitudes) decrease with increasing amplitude of the forcing. In the extratropics the responses are, in general, seasonally dependent with frequently stronger sensitivities in winter than in summer. Amplitude and phase lag of the ozone response in the tropical stratosphere and lower mesosphere are in satisfactory agreement with available observations. The agreement between the calculated and observed temperature response is generally worse than in the case of ozone.


2008 ◽  
Vol 8 (1) ◽  
pp. 1113-1158 ◽  
Author(s):  
A. N. Gruzdev ◽  
H. Schmidt ◽  
G. P. Brasseur

Abstract. This paper analyzes the effects of the solar rotational (27-day) irradiance variations on the chemical composition and temperature of the stratosphere, mesosphere and lower thermosphere as simulated by the three-dimensional chemistry-climate model HAMMONIA. Different methods are used to analyze the model results, including high resolution spectral and cross-spectral techniques. Shortcomings of the frequently applied correlation (regression) method are revealed. To force the simulations, an idealized irradiance variation with a constant period of 27 days (apparent solar rotation period) and with constant amplitude is used. While the calculated thermal and chemical responses are very distinct and permanent in the upper atmosphere, the responses in the stratosphere and mesosphere vary considerably in time despite the constant forcing. The responses produced by the model exhibit a non-linear behavior. In general, the response sensitivities decrease with increasing amplitude of the forcing. In the extratropics the responses are, in general, seasonally dependent with frequently stronger sensitivities in winter than in summer. Amplitude and phase lag of the ozone response in the tropical stratosphere and lower mesosphere are in satisfactory agreement with available observations, while discrepancies between calculated and observed ozone responses become larger above ~75 km. The agreement between the calculated and observed temperature response is generally worse than in the case of ozone.


2019 ◽  
Vol 9 ◽  
pp. A39 ◽  
Author(s):  
Maxim V. Klimenko ◽  
Vladimir V. Klimenko ◽  
Fedor S. Bessarab ◽  
Timofei V. Sukhodolov ◽  
Pavel A. Vasilev ◽  
...  

We apply the Entire Atmosphere GLobal (EAGLE) model to investigate the upper atmosphere response to the January 2009 sudden stratospheric warming (SSW) event. The model successfully reproduces neutral temperature and total electron content (TEC) observations. Using both model and observational data, we identify a cooling in the tropical lower thermosphere caused by the SSW. This cooling affects the zonal electric field close to the equator, leading to an enhanced vertical plasma drift. We demonstrate that along with a SSW-related wind disturbance, which is the main source to form a dynamo electric field in the ionosphere, perturbations of the ionospheric conductivity also make a significant contribution to the formation of the electric field response to SSW. The post-sunset TEC enhancement and pre-sunrise electron content reduction are revealed as a response to the 2009 SSW. We show that at post-sunset hours the SSW affects low-latitude TEC via a disturbance of the meridional electric field. We also show that the phase change of the semidiurnal migrating solar tide (SW2) in the neutral wind caused by the 2009 SSW at the altitude of the dynamo electric field generation has a crucial importance for the SW2 phase change in the zonal electric field. Such changes lead to the appearance of anomalous diurnal variability of the equatorial electromagnetic plasma drift and subsequent low-latitudinal TEC disturbances in agreement with available observations. Plain Language Summary – Entire Atmosphere GLobal model (EAGLE) interactively calculates the troposphere, stratosphere, mesosphere, thermosphere, and plasmasphere–ionosphere system states and their response to various natural and anthropogenic forcing. In this paper, we study the upper atmosphere response to the major sudden stratospheric warming that occurred in January 2009. Our results agree well with the observed evolution of the neutral temperature in the upper atmosphere and with low-latitude ionospheric disturbances over America. For the first time, we identify an SSW-related cooling in the tropical lower thermosphere that, in turn, could provide additional information for understanding the mechanisms for the generation of electric field disturbances observed at low latitudes. We show that the SSW-related vertical electromagnetic drift due to electric field disturbances is a key mechanism for interpretation of an observed anomalous diurnal development of the equatorial ionization anomaly during the 2009 SSW event. We demonstrate that the link between thermospheric winds and the ionospheric dynamo electric field during the SSW is attained through the modulation of the semidiurnal migrating solar tide.


2005 ◽  
Vol 25 (6) ◽  
pp. 639-652 ◽  
Author(s):  
Alessandro Dell’Aquila ◽  
Valerio Lucarini ◽  
Paolo M. Ruti ◽  
Sandro Calmanti

2009 ◽  
Vol 5 (3) ◽  
pp. 329-345 ◽  
Author(s):  
S. Bonelli ◽  
S. Charbit ◽  
M. Kageyama ◽  
M.-N. Woillez ◽  
G. Ramstein ◽  
...  

Abstract. A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets. A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.


2018 ◽  
Vol 180 ◽  
pp. 126-136 ◽  
Author(s):  
M.A. Chernigovskaya ◽  
B.G. Shpynev ◽  
K.G. Ratovsky ◽  
A.Yu. Belinskaya ◽  
A.E. Stepanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document