scholarly journals The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a three-dimensional chemistry-climate model

2008 ◽  
Vol 8 (1) ◽  
pp. 1113-1158 ◽  
Author(s):  
A. N. Gruzdev ◽  
H. Schmidt ◽  
G. P. Brasseur

Abstract. This paper analyzes the effects of the solar rotational (27-day) irradiance variations on the chemical composition and temperature of the stratosphere, mesosphere and lower thermosphere as simulated by the three-dimensional chemistry-climate model HAMMONIA. Different methods are used to analyze the model results, including high resolution spectral and cross-spectral techniques. Shortcomings of the frequently applied correlation (regression) method are revealed. To force the simulations, an idealized irradiance variation with a constant period of 27 days (apparent solar rotation period) and with constant amplitude is used. While the calculated thermal and chemical responses are very distinct and permanent in the upper atmosphere, the responses in the stratosphere and mesosphere vary considerably in time despite the constant forcing. The responses produced by the model exhibit a non-linear behavior. In general, the response sensitivities decrease with increasing amplitude of the forcing. In the extratropics the responses are, in general, seasonally dependent with frequently stronger sensitivities in winter than in summer. Amplitude and phase lag of the ozone response in the tropical stratosphere and lower mesosphere are in satisfactory agreement with available observations, while discrepancies between calculated and observed ozone responses become larger above ~75 km. The agreement between the calculated and observed temperature response is generally worse than in the case of ozone.

2009 ◽  
Vol 9 (2) ◽  
pp. 595-614 ◽  
Author(s):  
A. N. Gruzdev ◽  
H. Schmidt ◽  
G. P. Brasseur

Abstract. This paper analyzes the effects of the solar rotational (27-day) irradiance variations on the chemical composition and temperature of the stratosphere, mesosphere and lower thermosphere as simulated by the three-dimensional chemistry-climate model HAMMONIA. Different methods are used to analyze the model results, including high resolution spectral and cross-spectral techniques. To force the simulations, an idealized irradiance variation with a constant period of 27 days (apparent solar rotation period) and with constant amplitude is used. While the calculated thermal and chemical responses are very distinct and permanent in the upper atmosphere, the responses in the stratosphere and mesosphere vary considerably in time despite the constant forcing. The responses produced by the model exhibit a non-linear behavior: in general, the response sensitivities (not amplitudes) decrease with increasing amplitude of the forcing. In the extratropics the responses are, in general, seasonally dependent with frequently stronger sensitivities in winter than in summer. Amplitude and phase lag of the ozone response in the tropical stratosphere and lower mesosphere are in satisfactory agreement with available observations. The agreement between the calculated and observed temperature response is generally worse than in the case of ozone.


2012 ◽  
Vol 12 (5) ◽  
pp. 2533-2540 ◽  
Author(s):  
C. McLandress ◽  
J. Perlwitz ◽  
T. G. Shepherd

Abstract. In a recent paper Hu et al. (2011) suggest that the recovery of stratospheric ozone during the first half of this century will significantly enhance free tropospheric and surface warming caused by the anthropogenic increase of greenhouse gases, with the effects being most pronounced in Northern Hemisphere middle and high latitudes. These surprising results are based on a multi-model analysis of CMIP3 model simulations with and without prescribed stratospheric ozone recovery. Hu et al. suggest that in order to properly quantify the tropospheric and surface temperature response to stratospheric ozone recovery, it is necessary to run coupled atmosphere-ocean climate models with stratospheric ozone chemistry. The results of such an experiment are presented here, using a state-of-the-art chemistry-climate model coupled to a three-dimensional ocean model. In contrast to Hu et al., we find a much smaller Northern Hemisphere tropospheric temperature response to ozone recovery, which is of opposite sign. We suggest that their result is an artifact of the incomplete removal of the large effect of greenhouse gas warming between the two different sets of models.


Author(s):  
Erdal Yiğit ◽  
Alexander S. Medvedev ◽  
Manfred Ern

Atmospheric gravity waves (GWs) are generated in the lower atmosphere by various weather phenomena. They propagate upward, carry energy and momentum to higher altitudes, and appreciably influence the general circulation upon depositing them in the middle and upper atmosphere. We use a three-dimensional first-principle general circulation model (GCM) with implemented nonlinear whole atmosphere GW parameterization to study the global climatology of wave activity and produced effects at altitudes up to the upper thermosphere. The numerical experiments were guided by the GW momentum fluxes and temperature variances as measured in 2010 by the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument onboard NASA’s TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics) satellite. This includes the latitudinal dependence and magnitude of GW activity in the lower stratosphere for the boreal summer season. The modeling results were compared to the SABER temperature and total absolute momentum flux and Upper Atmosphere Research Satellite (UARS) data in the mesosphere and lower thermosphere. Simulations suggest that, in order to reproduce the observed circulation and wave activity in the middle atmosphere, GW fluxes that are smaller than observed fluxes have to be used at the source level in the lower atmosphere. This is because observations contain a broader spectrum of GWs, while parameterizations capture only a portion relevant to the middle and upper atmosphere dynamics. Accounting for the latitudinal variations of the source appreciably improves simulations.


2020 ◽  
Author(s):  
Tarique Adnan Siddiqui ◽  
Yosuke Yamazaki ◽  
Claudia Stolle

<p>It is now well accepted that the ionosphere and thermosphere are sensitive to forcing from the lower atmosphere (troposphere-stratosphere) owing mainly to the progress that have been made in the last decade in understanding the vertical coupling mechanisms connecting these two distinct atmospheric regions. In this regard, the studies linking the upper atmosphere (mesosphere-lower thermosphere-ionosphere) variability due to sudden stratospheric warming (SSW) events have been particularly important. The change of stratospheric circulation due to SSW events modulate the spectrum of vertically upward propagating atmospheric waves (gravity waves, tides, and planetary waves) resulting in numerous changes in the state of the upper atmosphere. Much of our understanding about the upper atmospheric variability associated due to the SSWs events have been gained by studying the 2008/2009 SSW event, which occurred under extremely low solar flux conditions. Recently another SSW event in 2018/2019 occurred under similar low solar flux conditions. In this study we simulate both these SSW events using Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X) and present the findings by comparing the ionospheric and thermospheric response to both these SSW events. The tidal characteristics of the semidiurnal solar and lunar tides and the thermospheric composition for both these SSW events are compared and the causes of varying responses are investigated.</p>


2009 ◽  
Vol 66 (1) ◽  
pp. 173-186 ◽  
Author(s):  
H-L. Liu ◽  
F. Sassi ◽  
R. R. Garcia

Abstract It has been well established that the atmosphere is chaotic by nature and thus has a finite limit of predictability. The chaotic divergence of initial conditions and the predictability are explored here in the context of the whole atmosphere (from the ground to the thermosphere) using the NCAR Whole Atmosphere Community Climate Model (WACCM). From ensemble WACCM simulations, it is found that the early growth of differences in initial conditions is associated with gravity waves and it becomes apparent first in the upper atmosphere and progresses downward. The differences later become more profound on increasingly larger scales, and the growth rates of the differences change in various atmospheric regions and with seasons—corresponding closely with the strength of planetary waves. For example, in December–February the growth rates are largest in the northern and southern mesosphere and lower thermosphere and in the northern stratosphere, while smallest in the southern stratosphere. The growth rates, on the other hand, are not sensitive to the altitude where the small differences are introduced in the initial conditions or the physical nature of the differences. Furthermore, the growth rates in the middle and upper atmosphere are significantly reduced if the lower atmosphere is regularly reinitialized, and the reduction depends on the frequency and the altitude range of the reinitialization.


2011 ◽  
Vol 11 (12) ◽  
pp. 32993-33012 ◽  
Author(s):  
C. McLandress ◽  
J. Perlwitz ◽  
T. G. Shepherd

Abstract. In a recent paper Hu et al. (2011) suggest that the recovery of stratospheric ozone during the first half of this century will significantly enhance free tropospheric and surface warming caused by the anthropogenic increase of greenhouse gases, with the effects being most pronounced in Northern Hemisphere middle and high latitudes. These surprising results are based on a multi-model analysis of IPCC AR4 model simulations with and without prescribed stratospheric ozone recovery. Hu et al. suggest that in order to properly quantify the tropospheric and surface temperature response to stratospheric ozone recovery, it is necessary to run coupled atmosphere-ocean climate models with stratospheric ozone chemistry. The results of such an experiment are presented here, using a state-of-the-art chemistry-climate model coupled to a three-dimensional ocean model. In contrast to Hu et al., we find a much smaller Northern Hemisphere tropospheric temperature response to ozone recovery, which is of opposite sign. We argue that their result is an artifact of the incomplete removal of the large effect of greenhouse gas warming between the two different sets of models.


2021 ◽  
Author(s):  
Tarique Adnan Siddiqui ◽  
Yosuke Yamazaki ◽  
Claudia Stolle

<p>Owing to the progress that have been made in understanding the vertical coupling mechanisms in the last decade, it is now well established that the thermosphere-ionosphere system under quiet geomagnetic conditions is highly sensitive to lower atmospheric forcing.  In this regard, the studies linking the upper atmosphere (mesosphere-lower thermosphere-ionosphere) variability and sudden stratospheric warming (SSW) events have been particularly important. The changes to atmospheric circulation due to SSW events modulate the spectrum of vertically upward propagating atmospheric waves (gravity waves, tides, and planetary waves) resulting in numerous changes in the state of the upper atmosphere. Much of our understanding about the upper atmospheric variability associated due to SSWs events have been gained by studying the 2008/2009 Northern Hemisphere (NH) SSW event, which occurred under extremely quiet geomagnetic conditions. Recently, two major NH SSW events in the winter of 2018/2019 and 2020/2021 occurred under similarly quiet geomagnetic conditions. In this work, both these SSW events have been simulated using Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X) and the low- and mid-latitude ionospheric response to both these SSW events will be presented.</p>


2007 ◽  
Vol 7 (4) ◽  
pp. 12327-12347 ◽  
Author(s):  
T. G. Shepherd ◽  
A. I. Jonsson

Abstract. The vertical profile of global-mean stratospheric temperature changes has traditionally represented an important diagnostic for the attribution of the cooling effects of stratospheric ozone depletion and CO2 increases. However, CO2-induced cooling alters ozone abundance by perturbing ozone chemistry, thereby coupling the stratospheric ozone-temperature response to changes in CO2 and ozone-depleting substances (ODSs). Here we untangle the ozone-temperature coupling and show that the attribution of global-mean stratospheric temperature changes to CO2 and ODS changes (which are the true anthropogenic forcing agents) can be quite different from the traditional attribution to CO2 and ozone changes. The significance of these effects is quantified empirically using simulations from a three-dimensional chemistry-climate model. The results confirm the essential validity of the traditional approach in attributing changes during the past period of rapid ODS increases, although we find that about 10% of the upper stratospheric ozone decrease from ODS increases over the period 1975–1995 was offset by the increase in CO2, and the CO2-induced cooling in the upper stratosphere has been somewhat overestimated. When considering ozone recovery, however, the ozone-temperature coupling is a first-order effect; fully 2/5 of the upper stratospheric ozone increase projected to occur from 2010–2040 is attributable to CO2 increases. Thus, it has now become necessary to base attribution of global-mean stratospheric temperature changes on CO2 and ODS changes rather than on CO2 and ozone changes.


2019 ◽  
Vol 9 ◽  
pp. A39 ◽  
Author(s):  
Maxim V. Klimenko ◽  
Vladimir V. Klimenko ◽  
Fedor S. Bessarab ◽  
Timofei V. Sukhodolov ◽  
Pavel A. Vasilev ◽  
...  

We apply the Entire Atmosphere GLobal (EAGLE) model to investigate the upper atmosphere response to the January 2009 sudden stratospheric warming (SSW) event. The model successfully reproduces neutral temperature and total electron content (TEC) observations. Using both model and observational data, we identify a cooling in the tropical lower thermosphere caused by the SSW. This cooling affects the zonal electric field close to the equator, leading to an enhanced vertical plasma drift. We demonstrate that along with a SSW-related wind disturbance, which is the main source to form a dynamo electric field in the ionosphere, perturbations of the ionospheric conductivity also make a significant contribution to the formation of the electric field response to SSW. The post-sunset TEC enhancement and pre-sunrise electron content reduction are revealed as a response to the 2009 SSW. We show that at post-sunset hours the SSW affects low-latitude TEC via a disturbance of the meridional electric field. We also show that the phase change of the semidiurnal migrating solar tide (SW2) in the neutral wind caused by the 2009 SSW at the altitude of the dynamo electric field generation has a crucial importance for the SW2 phase change in the zonal electric field. Such changes lead to the appearance of anomalous diurnal variability of the equatorial electromagnetic plasma drift and subsequent low-latitudinal TEC disturbances in agreement with available observations. Plain Language Summary – Entire Atmosphere GLobal model (EAGLE) interactively calculates the troposphere, stratosphere, mesosphere, thermosphere, and plasmasphere–ionosphere system states and their response to various natural and anthropogenic forcing. In this paper, we study the upper atmosphere response to the major sudden stratospheric warming that occurred in January 2009. Our results agree well with the observed evolution of the neutral temperature in the upper atmosphere and with low-latitude ionospheric disturbances over America. For the first time, we identify an SSW-related cooling in the tropical lower thermosphere that, in turn, could provide additional information for understanding the mechanisms for the generation of electric field disturbances observed at low latitudes. We show that the SSW-related vertical electromagnetic drift due to electric field disturbances is a key mechanism for interpretation of an observed anomalous diurnal development of the equatorial ionization anomaly during the 2009 SSW event. We demonstrate that the link between thermospheric winds and the ionospheric dynamo electric field during the SSW is attained through the modulation of the semidiurnal migrating solar tide.


Sign in / Sign up

Export Citation Format

Share Document