Fire weather thresholds and burnt area in Portugal

Author(s):  
Tomás Calheiros ◽  
Akli Benali ◽  
João Neves Silva ◽  
Mário Pereira ◽  
João Pedro Nunes

<p>Fire strongly depends on the weather, especially in Mediterranean climate regions with rainy winters but dry and hot summers, as in Portugal. Fire weather indices are commonly used to assess the current and/or cumulative effect of weather conditions on fuel moisture and fire behaviour. The Daily Severity Rating (DSR) is a numeric rating of the difficulty of controlling fires, based on the Canadian Fire Weather Index (FWI), developed to accurately assess the expected efforts required for fire suppression. Recently, the 90th percentile of DSR (90pDSR) was identified as a good indicator of extreme fire weather and well related to the burnt area in some regions of the Iberian Peninsula. The purposes of this work were: 1) to verify if this threshold is adequate for all continental Portugal; 2) to identify and characterize local variations of this threshold, at a higher spatial resolution; and, 3) to analyse other variables that can explain this spatial heterogeneity.</p><p>We used fire data from the Portuguese Institute for the Conservation of Nature and Forests and weather data from ERA5, for the 2001 – 2019 study period. We also used the Land Use and Occupation Charter for 2018 (COS2018), provided by the Directorate-General for Territory, to assess land use and cover in Portugal. The meteorological variables to compute the DSR are air temperature, relative humidity, wind speed and daily accumulated precipitation, at 12 UTC. DSR percentiles (DSRp) were computed for summer period (between 15<sup>th</sup> May and 31<sup>st</sup> October) and combined with large (>100 ha) burnt areas (BA), with the purpose to identify which DSRp value is responsible of a large amount of BA (80 or 90%). Cluster analysis was performed using the relation between DSRp and BA, in each municipality of Continental Portugal.</p><p>Results reveal that the 90pDSR is an adequate threshold for the entire territory. However, at the municipalities’ level, some important differences appear between DSRp thresholds that explain 90 and 80% of the total BA. Cluster analysis shows that these differences justified the existence of several statistically significant clusters. Generally, municipalities where large fires take place in high or very high DSRp are located in north and central coastal areas, Serra da Estrela, Serra de Montejunto and Algarve. In contrast, clusters where large fires where registered with low DSRp appear in northern and central hinterland. COS2018 data was assessed to analyse if and how the vegetation cover type influences the clusters’ distribution and affects the relationship between DSRp and total BA. Preliminary results expose a possible vegetation influence, especially between forests and shrublands.</p>

1991 ◽  
Vol 1 (2) ◽  
pp. 97 ◽  
Author(s):  
R Mees

Under severe fire weather conditions arson is believed to be the primary cause of large wildland fires in southern California. Wildland fire suppression personnel and the public use the the expression "This weather brings out the arsonists" to indicate their awareness of the high potential for large arson-caused fires under these conditions. To determine the accuracy of this statement, fire occurrence and weather data were analyzed for four southern California National Forests for a 10-year period (1975–1984). The results showed that the proportion of arson and non-arson person-caused fires remained the same under most fire-danger conditions; however, a much higher percentage of arson fires became large fires when fire danger was severe. Furthermore, the timing of the arsonist contributed to the frequent occurrence of large arson fires. The data presented here refute the idea that most arson fires occur under severe weather conditions and at the same time-validate the utility of maintaining arson prevention programs during most weather conditions.


2004 ◽  
Vol 13 (4) ◽  
pp. 391 ◽  
Author(s):  
B. D. Amiro ◽  
K. A. Logan ◽  
B. M. Wotton ◽  
M. D. Flannigan ◽  
J. B. Todd ◽  
...  

Canadian Fire Weather Index (FWI) System components and head fire intensities were calculated for fires greater than 2 km2 in size for the boreal and taiga ecozones of Canada from 1959 to 1999. The highest noon-hour values were analysed that occurred during the first 21 days of each of 9333 fires. Depending on ecozone, the means of the FWI System parameters ranged from: fine fuel moisture code (FFMC), 90 to 92 (82 to 96 for individual fires); duff moisture code (DMC), 38 to 78 (10 to 140 for individual fires); drought code (DC), 210 to 372 (50 to 600 for individual fires); and fire weather index, 20 to 33 (5 to 60 for individual fires). Fine fuel moisture code decreased, DMC had a mid-season peak, and DC increased through the fire season. Mean head fire intensities ranged from 10 to 28 MW m−1 in the boreal spruce fuel type, showing that most large fires exhibit crown fire behaviour. Intensities of individual fires can exceed 60 MW m−1. Most FWI System parameters did not show trends over the 41-year period because of large inter-annual variability. A changing climate is expected to create future weather conditions more conducive to fire throughout much of Canada but clear changes have not yet occurred.


2018 ◽  
Vol 27 (3) ◽  
pp. 155 ◽  
Author(s):  
S. Lahaye ◽  
T. Curt ◽  
T. Fréjaville ◽  
J. Sharples ◽  
L. Paradis ◽  
...  

Wildfire containment is often very challenging for firefighters, especially for large and rapidly spreading fires where the risk of firefighter entrapment is high. However, the conditions leading to these ‘dangerous’ fires are poorly understood in Mediterranean Europe. Here, we analyse reports and interviews of firefighters over the last 40 years in four regions of south-eastern France and investigate the weather conditions that induce large fires, fast-growing fires and fires that are conducive to entrapment. We adopt a quantile regression model to test the effect of weather conditions across different fire sizes and growth rates. The results show that strong winds drive the largest fires everywhere except in Corsica, the southernmost region, where high temperature is the main driver. Strong winds also drive entrapments whereas high temperatures induce rapidly spreading fires. This emphasises that wind-driven fire is the dominant pattern of dangerous fires in France, but it reveals that large ‘convective’ fires can also present considerable danger. Beyond that, the Fire Weather Index appears to be a good predictor of large fires and fires conducive to entrapments. Identifying weather conditions that drive ‘dangerous’ wildfires will provide useful information for fire agencies to better prepare for adverse fire behaviours.


2021 ◽  
Author(s):  
Tomás Calheiros ◽  
Akli Benali ◽  
João Neves Silva ◽  
Mário Pereira ◽  
João Pedro Nunes

Abstract. Fire weather indices are used to assess the effect of weather conditions on wildfire behaviour and the high Daily Severity Rating percentile (DSRp) is strongly related to the total burned area (BA) in Portugal. The aims of this study were to: 1) assess if the 90th DSRp (DSR90p) threshold is adequate for Portugal; 2) identify and characterize regional variations of the DSRp threshold that justifies the bulk of BA; and, 3) analyse if vegetation cover can explain the DSRp spatial variability. We used wildfire data, weather reanalysis data from ERA5, for the 2001–2019 period, and the land use map for Portugal. DSRp were computed for an extended summer period and combined with individual large wildfires. Cluster analysis was performed using the relationship between DSRp and BA, in each municipality. Results revealed that the DSR90p is an adequate threshold for Portugal and well related to large BA. However, at the municipality scale, differences appear between the DSRp linked to the majority of accumulated BA. Cluster analysis revealed that municipalities where large wildfires occur in high DSRp present higher BA in forests and are located in coastal areas. In contrast, clusters with lower DSRp present greater BA in shrublands and are situated in eastern regions. These findings can support better prevention and fire suppression planning.


2015 ◽  
Vol 15 (6) ◽  
pp. 1407-1423 ◽  
Author(s):  
R. D. Field ◽  
A. C. Spessa ◽  
N. A. Aziz ◽  
A. Camia ◽  
A. Cantin ◽  
...  

Abstract. The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5° latitude by 2/3° longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA-based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DC = 1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRA's precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphere–ocean controls on fire weather, and calibration of FWI-based fire prediction models.


2014 ◽  
Vol 23 (1) ◽  
pp. 34 ◽  
Author(s):  
C. C. Simpson ◽  
H. G. Pearce ◽  
A. P. Sturman ◽  
P. Zawar-Reza

The Weather Research and Forecasting (WRF) mesoscale model was used to simulate the fire weather conditions for the 2009–10 wildland fire season in New Zealand. The suitability of WRF to simulate the high-end fire weather conditions for this period was assessed through direct comparison with observational data taken from 23 surface and two upper-air stations located across New Zealand. The weather variables and fire weather indices considered in the verification were the 1200 hours NZST air temperature, relative humidity, wind speed and direction, 24-h rainfall, New Zealand Fire Weather Index (FWI) and Continuous Haines Index (CHI). On observed high-end fire weather days, the model under-predicted the air temperatures and relative humidities, and over-predicted the wind speeds and 24-h rainfall at most weather stations. The results demonstrated that although WRF is suitable for modelling the air temperatures, there are issues with modelling the wind speeds and rainfall quantities. The model error in the wind speeds and 24-h rainfall contributed significantly towards the model under-prediction of the FWI on observed high-end fire weather days. In addition, the model was not suitable for predicting the number of high-end fire weather days at most weather stations, which represents a serious operational limitation of the WRF model for fire management applications. Finally, the modelled CHI values were only in moderate agreement with the observed values, principally due to the model error in the dew point depression at 850hPa.


2011 ◽  
Vol 50 (8) ◽  
pp. 1617-1626 ◽  
Author(s):  
Paul Fox-Hughes

AbstractHalf-hourly airport weather observations have been used to construct high-temporal-resolution datasets of McArthur Mark V forest fire danger index (FFDI) values for three locations in Tasmania, Australia, enabling a more complete understanding of the range and diurnal variability of fire weather. Such an understanding is important for fire management and planning to account for the possibility of weather-related fire flare ups—in particular, early in a day and during rapidly changing situations. In addition, climate studies have hitherto generally been able to access only daily or at best 3-hourly weather data to generate fire-weather index values. Comparison of FFDI values calculated from frequent (subhourly) observations with those derived from 3-hourly synoptic observations suggests that large numbers of significant fire-weather events are missed, even by a synoptic observation schedule, and, in particular, by observations made at 1500 LT only, suggesting that many climate studies may underestimate the frequencies of occurrence of fire-weather events. At Hobart, in southeastern Tasmania, only one-half of diurnal FFDI peaks over a critical warning level occur at 1500 LT, with the remainder occurring across a broad range of times. The study reinforces a perception of pronounced differences in the character of fire weather across Tasmania, with differences in diurnal patterns of variability evident between locations, in addition to well-known differences in the ranges of peak values observed.


2011 ◽  
Vol 20 (8) ◽  
pp. 963 ◽  
Author(s):  
Xiaorui Tian ◽  
Douglas J. McRae ◽  
Jizhong Jin ◽  
Lifu Shu ◽  
Fengjun Zhao ◽  
...  

The Canadian Forest Fire Weather Index (FWI) system was evaluated for the Daxing'anling region of northern China for the 1987–2006 fire seasons. The FWI system reflected the regional fire danger and could be effectively used there in wildfire management. The various FWI system components were classified into classes (i.e. low to extreme) for fire conditions found in the region. A total of 81.1% of the fires occurred in the high, very high and extreme fire danger classes, in which 73.9% of the fires occurred in the spring (0.1, 9.5, 33.3 and 33.1% in March, April, May and June). Large wildfires greater than 200 ha in area (16.7% of the total) burnt 99.2% of the total burnt area. Lightning was the main ignition source for 57.1% of the total fires. Result show that forest fires mainly occurred in deciduous coniferous forest (61.3%), grass (23.9%) and deciduous broad leaved forest (8.0%). A bimodal fire season was detected, with peaks in May and October. The components of FWI system were good indicators of fire danger in the Daxing'anling region of China and could be used to build a working fire danger rating system for the region.


2020 ◽  
Vol 70 (1) ◽  
pp. 120
Author(s):  
Andrew J. Dowdy

Spatio-temporal variations in fire weather conditions are presented based on various data sets, with consistent approaches applied to help enable seamless services over different time scales. Recent research on this is shown here, covering climate change projections for future years throughout this century, predictions at multi-week to seasonal lead times and historical climate records based on observations. Climate projections are presented based on extreme metrics with results shown for individual seasons. A seasonal prediction system for fire weather conditions is demonstrated here as a new capability development for Australia. To produce a more seamless set of predictions, the data sets are calibrated based on quantile-quantile matching for consistency with observations-based data sets, including to help provide details around extreme values for the model predictions (demonstrating the quantile matching for extremes method). Factors influencing the predictability of conditions are discussed, including pre-existing fuel moisture, large-scale modes of variability, sudden stratospheric warmings and climate trends. The extreme 2019–2020 summer fire season is discussed, with examples provided on how this suite of calibrated fire weather data sets was used, including long-range predictions several months ahead provided to fire agencies. These fire weather data sets are now available in a consistent form covering historical records back to 1950, long-range predictions out to several months ahead and future climate change projections throughout this century. A seamless service across different time scales is intended to enhance long-range planning capabilities and climate adaptation efforts, leading to enhanced resilience and disaster risk reduction in relation to natural hazards.


2021 ◽  
Author(s):  
Matthew Charles Perry ◽  
Emilie Vanvyve ◽  
Richard A. Betts ◽  
Erika J. Palin

Abstract. Past and future trends in the frequency of high danger fire weather conditions have been analysed for the UK. An analysis of satellite-derived burned area data from the last 18 years has identified the seasonal cycle with a peak in spring and a secondary peak in summer, the high level of interannual variability, and the lack of a significant trend despite some large events occurring in the last few years. These results were confirmed with a longer series of fire weather indices back to 1979. The Initial Spread Index (ISI) has been used for spring, as this reflects the moisture of fine fuel surface vegetation, whereas conditions conducive to summer wildfires are hot, dry weather reflected in the moisture of deeper organic layers which is encompassed in the Fire Weather Index (FWI). Future projections are assessed using an ensemble of regional climate models from the UK Climate Projections, combining variables to derive the fire weather indices. The results show a large increase in hazardous fire weather conditions in summer. At 2 °C global warming relative to 1850–1900, the frequency of days with “very high” fire danger is projected to double compared to a recent historical period. This frequency increases by 5 times at 4 °C of global warming. Smaller increases are projected for spring, with a 150 % increase for England at 2 °C of global warming and a doubling at 4 °C. A particularly large projected increase for late summer and early autumn suggests a possible extension of the wildfire season, depending on fuel availability. These results suggest that wildfire can be considered an “emergent risk” for the UK, as past events have not had widespread major impacts, but this could change in future. The large increase in risk between the 2 °C and 4 °C levels of global warming highlights the importance of global efforts to keep warming below 2 °C.


Sign in / Sign up

Export Citation Format

Share Document