Periodic Fluid-mediated Weakening and Cementation Drives Cyclic Reorganisation of Shallow Basaltic Fault Zones

Author(s):  
Bob Bamberg ◽  
Richard Walker ◽  
Marc Reichow

<p>Faults constitute the major source for mechanical and permeability heterogeneity in basaltic sequences, yet their architecture, and mechanical and physical properties remain poorly understood. These are however critical as basaltic reservoirs are becoming increasingly important for geothermal applications and CO<sub>2</sub> storage. Here we present a detailed microstructural- to outcrop-scale characterisation of mature (decametre-hectometre displacement) fault zones in layered basalts, in the Faroe Islands. Outcrop scale structures and fault rock distribution within the fault zone were mapped in the field to build 3D virtual outcrop models, with detailed characterisation of fault rock microstructure and petrology obtained from optical and SE-microscopy.</p><p>The fault zones exhibit evidence for cyclic activity controlled by fault internal fluid pressure variation. Deformation mechanisms in the core alternate between shear-compaction, evidenced by foliated cataclasite and gouge development, and dilatation through fluid overpressure, leading to hydrofracture and vein formation. Generally, a decametre-wide damage zone of Riedel faults is centrally transected by the fault core. The fault core is organised around a principal slip surface (PSS) hosted in a decimetre-wide principal slip zone (PSZ). The PSS and PSZ are dominantly composed of (ultra-) cataclasites, while the remaining core comprises anastomosing cataclastic bands bounding lenticular zones of various brecciated fault rocks. Further, PSS-proximal zones show significant late-stage dilatation by hydrothermal breccias or tabular veins with up to decimetre apertures, filled with early syntaxial to blocky zeolite and/or late coarse (≤ 1 cm) blocky calcite. The structures in the fault core are mutually overprinting, evidencing pulsed fault activity and PSS migration. The native plagioclase-pyroxene assemblage of the host rock is almost completely altered to zeolites and red-brown smectites in the fault core and along surrounding damage of mature faults, while lower displacement faults preserve the host rock mineralogy even in gouge. We infer that fluid flow along initial damage promotes alteration and the associated chemical weakening localises strain into a narrow PSZ. Here, fault activity is governed by alternating deformation styles – shear‑compaction and dilatation – suggesting changes in deformation mechanism linked to transient permeability decrease within the PSZ, followed by fluid overpressure and hydrofracture. Overall rock mechanical properties are thus governed by the combined effects of permanent chemical weakening and transient fluid-mediated mechanical weakening, alternating with cementation and healing, and will be explored by direct shear deformation experiments in the future.</p>

2019 ◽  
Vol 26 (3) ◽  
pp. 418-433 ◽  
Author(s):  
Andy P. Cooke ◽  
Quentin J. Fisher ◽  
Emma A. H. Michie ◽  
Graham Yielding

The inherent heterogeneity of carbonate rocks suggests that carbonate-hosted fault zones are also likely to be heterogeneous. Coupled with a lack of host–fault petrophysical relationships, this makes the hydraulic behaviour of carbonate-hosted fault zones difficult to predict. Here we investigate the link between host rock and fault rock porosity, permeability and texture, by presenting data from series of host rock, damage zone and fault rock samples from normally faulted, shallowly buried limestones from Malta. Core plug X-ray tomography indicates that texturally heterogeneous host rocks lead to greater variability in the porosity and permeability of fault rocks. Fault rocks derived from moderate- to high-porosity (>20%) formations experience permeability reductions of up to six orders of magnitude relative to the host; >30% of these fault rocks could act as baffles or barriers to fluid flow over production timescales. Fault rocks derived from lower-porosity (<20%) algal packstones have permeabilities that are lower than their hosts by up to three orders of magnitude, which is unlikely to impact fluid flow on production timescales. The variability of fault rock permeability is controlled by a number of factors, including the initial host rock texture and porosity, the magnitude of strain localization, and the extent of post-deformation diagenetic alteration. Fault displacement has no obvious control over fault rock permeability. The results enable better predictions of fault rock permeability in similar lithotypes and tectonic regimes. This may enable predictions of across-fault fluid flow potential when combined with data on fault zone architecture.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Hannah Riegel ◽  
Miller Zambrano ◽  
Fabrizio Balsamo ◽  
Luca Mattioni ◽  
Emanuele Tondi

Geofluid reservoirs located in heterolithic successions (e.g., turbidites) can be affected by vertical and lateral compartmentalization due to interbedded fine-grained facies (i.e., shale, siltstones) and the presence of faults, respectively. A fault can behave as a conduit or barrier to fluid flow depending on its architecture and the individual hydraulic behavior of its components (i.e., fault core, damage zone). The fault core, normally composed by fault rock or smeared clay material, commonly acts as a flow inhibitor across the fault. Fault-related fractures (macro- and microscopic) in the damage zone generally increase the permeability parallel to the fault, except when they are cemented or filled with gouge material. Although macrofractures (which define the fracture porosity) dominate fluid flow, the matrix porosity (including microfractures) begins to have a more important role in fluid flow as the aperture of macrofractures is occluded, particularly at greater depth. This study investigates the variation in matrix permeability in fault zones hosted in heterolithic successions due to fault architecture and stratigraphy of host rock (i.e., sand-rich turbidites). Two key areas of well-exposed, faulted Miocene turbidites located in central and southern Italy were selected. For this study, six separate fault zones of varying offset were chosen. Each impacts heterolithic successions that formed under similar tectonic conditions and burial depths. Across the selected fault zones, an extensive petrophysical analysis was done in the field and laboratory, through air permeameter measurements, thin section, and synchrotron analysis in both host rock, damage zone, and fault core. Results suggest that the amount and distribution of clay layers in a heterolithic sequence affects fluid flow across the fault, regardless of fault offset.


2020 ◽  
Author(s):  
Inbar Vaknin ◽  
Andy Nicol ◽  
Conrad Childs

&lt;p&gt;Fault surfaces and fault zones have been shown to have complex geometries comprising a range of morphologies including, segmentation, tip-line splays and slip-surface corrugations (e.g., Childs et al., 2009*). The three-dimensional (3D) geometries of faults (and fault zones) is difficult to determine from outcrop data which are typically 2D and limited in size. In this poster we examine the small-scale geometries of faults from normal faults cropping out in well bedded parts of the Mount Messenger and Mahakatino formations in Taranaki, New Zealand. We present two main datasets; i) measurements and maps of 2D vertical and horizontal sections for in excess of 200 faults and, ii) 3D fault model of a small-fault (vertical displacement ~1 cm) produced by serial fault-perpendicular sections of a block 10x10x13 cm. The sectioned block contains a single fault that offsets sand and silt layers, and comprises two main dilational bends; in the 3D model we map displacement, bedding and fault geometry for the sectioned fault zone. Faults in the 2D dataset comprise a range of geometries including, vertical segmentation, bends, splays and fault-surface corrugations. Although we have little information on the local magnitudes and orientations of stresses during faulting, geometric analysis of the fault zones provides information on the relationships between bed characteristics (e.g., thickness, induration and composition) and fault-surface orientations. The available data supports the view that the strike and dip of fault surfaces vary by up to 25&amp;#176; producing undulations or corrugations on fault surfaces over a range of scales from millimetres to metres and in both horizontal and vertical directions. Preliminary analysis of the available data suggests that these corrugations appear to reflect fault refractions due to changing bed lithologies (unexpectedly the steepest sections of faults are in mudstone beds), breaching of relays and development of conjugate fault sets. The relative importance of these factors and their importance for fault geometry will be explored further in the poster.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;*Childs, C., Walsh, J.J., Manzocchi, T., Bonson, C., Nicol A., Sch&amp;#246;pfer, M.P.J. 2009. A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology 31, 117-127.&lt;/p&gt;


2021 ◽  
Author(s):  
Bob Bamberg ◽  
Richard Walker ◽  
Marc Reichow ◽  
Audrey Ougier-Simonin

Faults represent a critical heterogeneity in basaltic sequences, yet their architectural and hydromechanical evolution is poorly constrained. We present a detailed multi-scale characterisation of passively exhumed fault zones from the layered basalts of the Faroe Islands, which reveals cyclic stages of fault evolution. Outcrop-scale structures and fault rock distribution within the fault zones were mapped in the field and in 3D virtual outcrop models, with detailed characterisation of fault rock microstructure obtained from optical and SE-microscopy. The fault zones record localisation from decametre-wide Riedel shear zones into metre-wide fault cores, containing multiple cataclastic shear bands and low strain lenses organised around a central principal slip zone (PSZ). Shear bands and the PSZ consist of (ultra-) cataclasites with a zeolite-smectite assemblage replacing the original plagioclase-pyroxene host rock composition. Low-strain lenses are hydrothermal breccias of weakly altered host rock, or reworked fault rocks. PSZ-proximal zones show significant late-stage dilatation in the form of hydrothermal breccias or tabular veins with up to decimetre apertures. We interpret these structures as evolving from alternating shear-compaction and dilation through hydrofracture. The fault core preserves PSZ reworking, evidencing repeated shear zone locking and migration. The alternating deformation styles of shear compaction and dilatation suggest episodic changes in deformation mechanisms driven by transient overpressure and release. The fault zone mechanical properties are thus governed by the combined effects of permanent chemical weakening and transient fluid-mediated mechanical weakening, alternating with cementation and healing.


2020 ◽  
Author(s):  
Ulrich Kelka ◽  
Thomas Poulet ◽  
Luk Peeters

&lt;p&gt;Fault and fracture networks can govern fluid flow patterns in the subsurface and predicting fluid flow on a regional scale is of interest in a variety of fields like groundwater management, mining engineering, energy, and mineral resources. Especially the pore fluid pressure can have a strong impact on the strength of fault zones and might be one of the drivers for fault reactivation. Reliable simulations of the transient changes in fluid pressure need to account for the generic architecture of fault zones that comprises strong permeability contrast between the fault core and damage zone.&lt;/p&gt;&lt;p&gt;Particularly, the distribution and connectivity of large-scale fault zones can have a strong impact on the flow field. Yet, modelling numerically such features in their full complexity remains challenging. Often faults zones are conceptualized as forming exclusively either barriers or conduits to fluid flow. However, a generic architecture of fault zones often comprises a discrete fault core surrounded by a diffuse damage zone and conceptualizing large scale discontinuities simply as a barrier or conduit is unlikely to capture the regional scale fluid flow dynamics. It is known that if the fault zone is hosted in low-permeability strata, such as clays or crystalline rocks, a transversal flow barrier can form along the fault core whereas the fracture-rich fault damage zone represents a longitudinal conduit. In more permeable host-rocks (i.e. sandstones or carbonates) the reverse situation can occur, and the permeability distributions in the damage zones can be governed by the abundance of low-permeability deformation features. A reliable numerical model needs to account for the difference and strong contrasts in fluid flow properties of the core and the damage zone, both transversally and longitudinally, in order to make prediction about the regional fluid flow pattern.&lt;/p&gt;&lt;p&gt;Here, we present a numerical method that accounts for the generic fault zone architecture as lower dimensional interfaces in conforming meshes during fluid flow simulations in fault networks. With this method we aim to decipher the impact of fault zone architecture on subsurface flow pattern and fluid pressure evolution in fractures and faulted porous media. The method is implemented in a finite element framework for Multiphysics simulations. We demonstrate the impact of considering the more generic geological structure of individual faults on the flow field by conceptualizing discontinuities either as barriers, conduits or as a conduit-barrier system and show were these conceptualizations are applicable in natural systems. We further show that a reliable regional scale fluid flow simulation in faulted porous media needs to account for the generic fault zone architecture. The approach is finally used to evaluate the fluid flow response of statistically parameterised faulted media, in order to investigate the impact and sensitivity of each variable parameter.&lt;/p&gt;


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
László Molnár ◽  
Balázs Vásárhelyi ◽  
Tivadar M. Tóth ◽  
Félix Schubert

AbstractThe integrated evaluation of borecores from the Mezősas-Furta fractured metamorphic hydrocarbon reservoir suggests significantly distinct microstructural and rock mechanical features within the analysed fault rock samples. The statistical evaluation of the clast geometries revealed the dominantly cataclastic nature of the samples. Damage zone of the fault can be characterised by an extremely brittle nature and low uniaxial compressive strength, coupled with a predominately coarse fault breccia composition. In contrast, the microstructural manner of the increasing deformation coupled with higher uniaxial compressive strength, strain-hardening nature and low brittleness indicate a transitional interval between the weakly fragmented damage zone and strongly grinded fault core. Moreover, these attributes suggest this unit is mechanically the strongest part of the fault zone. Gougerich cataclasites mark the core zone of the fault, with their widespread plastic nature and locally pseudo-ductile microstructure. Strain localization tends to be strongly linked with the existence of fault gouge ribbons. The fault zone with ∼15 m total thickness can be defined as a significant migration pathway inside the fractured crystalline reservoir. Moreover, as a consequence of the distributed nature of the fault core, it may possibly have a key role in compartmentalisation of the local hydraulic system.


2020 ◽  
Author(s):  
Carolyn Boulton ◽  
Marcel Mizera ◽  
Maartje Hamers ◽  
Inigo Müller ◽  
Martin Ziegler ◽  
...  

&lt;p&gt;The Hungaroa Fault Zone (HFZ), an inactive thrust fault along the Hikurangi Subduction Margin, accommodated large displacements (~4&amp;#8211;10 km) at the onset of subduction in the early Miocene. Within a 40 m-wide high-strain fault core, calcareous mudstones and marls display evidence for mixed-mode viscous flow and brittle fracture, including: discrete faults; extensional veins containing stretched calcite fibers; shear veins with calcite slickenfibers; calcite foliation-boudinage structures; calcite pressure fringes; dark dissolution seams; stylolites; embayed calcite grains; and an anastomosing phyllosilicate foliation.&lt;/p&gt;&lt;p&gt;Multiple observations indicate a heterogeneous stress state within the fault core. Detailed optical and electron backscatter diffraction-based texture analysis of syntectonic calcite veins and isoclinally folded limestone layers within the fault core reveal that calcite grains have experienced intracrystalline plasticity and interface mobility, and local subgrain development and dynamic recrystallisation. The recrystallized grain size in two calcite veins of 6.0&amp;#177;3.9 &amp;#181;m (n=1339; 1SD; HFZ-H4-5.2m_A;) and 7.2&amp;#177;4.2&amp;#181;m (n=406; 1SD; HFZ-H4-19.9m) indicate high differential stresses (~76&amp;#8211;134 MPa). Hydrothermal friction experiments on a foliated, calcareous mudstone yield a friction coefficient of &amp;#956;&amp;#8776;0.35. Using this friction coefficient in the Mohr-Coulomb failure criterion yields a maximum differential stress of 55 MPa at 4 km depth, assuming a minimum principal stress equal to the vertical stress, an average sediment density of 2350 kg/m&lt;sup&gt;3&lt;/sup&gt;, and hydrostatic pore fluid pressure. Interestingly, calcareous microfossils within the foliated mudstone matrix are undeformed. Moreover, calcite veins are oriented both parallel to and highly oblique to the foliation, indicating spatial and/or temporal variations in the maximum principle stress azimuth.&lt;/p&gt;&lt;p&gt;To further constrain HFZ deformation conditions, clumped isotope geothermometry was performed on six syntectonic calcite veins, yielding formation temperatures of 79.3&amp;#177;19.9&amp;#176;C (95% confidence interval). These temperatures are well below those at which dynamic recrystallisation of calcite is anticipated and exclude shear heating and the migration of hotter &amp;#64258;uids as an explanation for dynamic recrystallisation of calcite at shallow crustal levels (&lt;5 km depth).&lt;/p&gt;&lt;p&gt;Our results indicate that: (1) stresses are spatiotemporally heterogeneous in crustal fault zones containing mixtures of competent and incompetent minerals; (2) heterogeneous deformation mechanisms, including frictional sliding, pressure solution, dynamic recrystallization, and mixed-mode fracturing accommodate slip in shallow crustal fault zones; and (3) brittle fractures play a pivotal role in fault zone deformation by providing fluid pathways that promote fluid-enhanced recovery and dynamic recrystallisation in the deforming calcite at remarkably low temperatures. Together, field geology, microscopy, and clumped isotope geothermometry provide a powerful method for constraining the multiscale slip behavior of large-displacement fault zones.&lt;/p&gt;


2003 ◽  
Vol 78-79 ◽  
pp. 191-195
Author(s):  
Kagan Tuncay ◽  
Gonca Ozkan ◽  
Peter Ortoleva
Keyword(s):  

2021 ◽  
Author(s):  
Irène Aubert ◽  
Juliette Lamarche ◽  
Philippe Leonide

&lt;p&gt;Understanding the impact of fault zones on reservoir trap properties is a major challenge for a variety of geological ressources applications. Fault zones in cohesive rocks are complex structures, composed of 3 components: rock matrix, damage zone fractures and fault core rock. Despite the diversity of existing methods to estimate fault zone permeability/drain properties, up to date none of them integrate simultaneously the 3 components of fracture, fault core and matrix permeability, neither their evolution with time. We present a ternary plot that characterizes the fault zones permeability as well as their drainage properties. The ternary plot aims at (i) characterizing the fault zone permeability between the three vertices of matrix, fractures and fault core permeability ; and at (ii) defining the drain properties among 4 possible hydraulic system: (I) good horizontal and vertical, fault-perpendicular and -parallel; (II) moderate parallel fluid pathway; (III) good parallel fault-core and (IV) good parallel fractures. The ternary plot method is valid for 3 and 2 components fault zones. The application to the Castellas Fault case study show the simplicity and efficiency of the plot for studying underground and/or fossil, simple or polyphase faults in reservoirs with complete or limited permeability data.&lt;/p&gt;


2021 ◽  
Author(s):  
Pierre Henry ◽  
Anthony Lomax ◽  
Sophie VIseur

&lt;p&gt;The architecture of fault damage zones combines various elements. Halos of intense fracturing forms around principal slip planes, possibly resulting from the shearing of slip surface rugosity or from dynamic stresses caused by earthquake ruptures. Splays forming off the tips and off the edges of a growing fault result in larger scale fracture networks and damage zones. Faults also grow by coalescence of en-echelon segments, such as Riedel fractures in a shear zone, and stress concentration at the steps results in linking damage zones. We show that these various elements of a shear-crack system can be recognized at seismogenic depth in earthquake sequences. Here we examine high-precision, absolute earthquake relocations for the Mw5.7 Magna UT, Mw6.4 Monte Cristo CA and Mw 5.8 Lone Pine CA earthquake sequences in 2020. We use iterative, source-specific, station corrections to loosely couple and improve event locations, and then waveform similarity between events as a measure for strongly coupling probabilistic event locations between multiplet events to greatly improve precision (see presentation EGU21-14608, and Lomax, 2020). The relocated seismicity shows mainly sparse clusters of seismicity, from which we infer multi-scale fault geometries. The uncertainty on earthquake locations (a few hundred meters) is typically larger than the width of halo damage zones observed in the field so that it is not possible to distinguish small aftershocks that could occur on a fracture within the halo or on a principal slip plane.&lt;/p&gt;&lt;p&gt;The relocated Magna seismicity shows a west-dipping, normal-faulting mainshock surface with an isolated, mainshock hypocenter at its base, surrounded up-dip in the hanging wall by a chevron of complex, clustered seismicity, likely related to secondary fault planes. This seismicity and a shallower up-dip cluster of aftershock seismicity correspond to clusters of background seismicity. The Lone Pine seismicity defines a main, east-dipping normal-faulting surface whose bottom edge connects to a steeper dipping splay, surrounded by a few clusters of background and reactivated seismicity. The space-time relation between background seismicity and multi-scale, foreshock-mainshock sequences are clearly imaged. The Monte Cristo Range seismicity (Lomax 2020) illuminates two, en-echelon primary faulting surfaces and surrounding, characteristic shear-crack features such as edge, wall, tip, and linking damage zones, showing that this sequence ruptured a complete shear crack system. In this example the width of the damage zone increases toward the earth surface. &amp;#160;Shallow damage zones align with areas of dense surface fracturing, subsidence and after-slip, showing the importance of damage zones for shaking intensity and earthquake hazard.&lt;/p&gt;&lt;p&gt;For all three sequences, some of the seismicity clusters delineate planar surfaces and concentrate along the edges of the suspected main slip patches. Other clusters of seismicity may result from larger scale damage associated with splay faults, en-echelon systems and linking zones, or with zones of background seismicity reactivated by stress changes from mainshock rupture. These types of seismicity and faulting structures may be more developed in the case of a complex rupture on an immature fault&lt;/p&gt;&lt;p&gt;__&lt;br&gt;Lomax (2020) The 2020 Mw6.5 Monte Cristo Range, Nevada earthquake: relocated seismicity shows rupture of a complete shear-crack system. https://eartharxiv.org/repository/view/1904&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document