Nutrient cycling differs between cropped soils with century-old and recently pyrolyzed biochar

Author(s):  
Victor Burgeon ◽  
Julien Fouché ◽  
Sarah Garré ◽  
Ramin Heidarian-Dehkordi ◽  
Gilles Colinet ◽  
...  

<p>The amendment of biochar to soils is often considered for its potential as a climate change mitigation and adaptation tool through agriculture. Its presence in tropical agroecosystems has been reported to positively impact soil productivity whilst successfully storing C on the short and long-term. In temperate systems, recent research showed limited to no effect on productivity following recent biochar addition to soils. Its long-term effects on productivity and nutrient cycling have, however, been overlooked yet are essential before the use of biochar can be generalized.</p><p>Our study was set up in a conventionally cropped field, containing relict charcoal kiln sites used as a model for century old biochar (CoBC, ~220 years old). These sites were compared to soils amended with recently pyrolyzed biochar (YBC) and biochar free soils (REF) to study nutrient dynamics in the soil-water-plant system. Our research focused on soil chemical properties, crop nutrient uptake and soil solution nutrient concentrations. Crop plant samples were collected over three consecutive land occupations (chicory, winter wheat and a cover crop) and soil solutions gathered through the use of suctions cups inserted in different horizons of the studied Luvisol throughout the field.</p><p>Our results showed that YBC mainly influenced the soil solution composition whereas CoBC mainly impacted the total and plant available soil nutrient content. In soils with YBC, our results showed lower nitrate and potassium concentrations in subsoil horizons, suggesting a decreased leaching, and higher phosphate concentrations in topsoil horizons. With time and the oxidation of biochar particles, our results reported higher total soil N, available K and Ca in the topsoil horizon when compared to REF, whereas available P was significantly smaller. Although significant changes occurred in terms of plant available nutrient contents and soil solution nutrient concentrations, this did not transcend in variations in crop productivity between soils for neither of the studied crops. Overall, our study highlights that young or aged biochar behave as two distinct products in terms of nutrient cycling in soils. As such the sustainability of these soils differ and their management must therefore evolve with time.</p>

1988 ◽  
Vol 68 (1) ◽  
pp. 177-181 ◽  
Author(s):  
J. L. B. CULLEY ◽  
B. K. DOW

Crop yields and heights and soil chemical properties on and immediately adjacent to an oil pipeline right-of-way (ROW) were monitored over a 10-yr period. Effects of soil mixing on chemical properties were still apparent despite good crop management. With the exception of alfalfa, field crop yields on the ROW were reduced by an average of 28% 10 yr after installation. Key words: Soil mixing, degradation, crop heights


2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


2002 ◽  
Vol 2 ◽  
pp. 827-841 ◽  
Author(s):  
Michael Bredemeier

The focus in this review of long-term effects on forest ecosystems is on human impact. As a classification of this differentiated and complex matter, three domains of long-term effects with different scales in space and time are distinguished: 1- Exploitation and conversion history of forests in areas of extended human settlement 2- Long-range air pollution and acid deposition in industrialized regions 3- Current global loss of forests and soil degradation.There is an evident link between the first and the third point in the list. Cultivation of primary forestland — with its tremendous effects on land cover — took place in Europe many centuries ago and continued for centuries. Deforestation today is a phenomenon predominantly observed in the developing countries, yet it threatens biotic and soil resources on a global scale. Acidification of forest soils caused by long-range air pollution from anthropogenic emission sources is a regional to continental problem in industrialized parts of the world. As a result of emission reduction legislation, atmospheric acid deposition is currently on the retreat in the richer industrialized regions (e.g., Europe, U.S., Japan); however, because many other regions of the world are at present rapidly developing their polluting industries (e.g., China and India), “acid rain” will most probably remain a serious ecological problem on regional scales. It is believed to have caused considerable destabilization of forest ecosystems, adding to the strong structural and biogeochemical impacts resulting from exploitation history.Deforestation and soil degradation cause the most pressing ecological problems for the time being, at least on the global scale. In many of those regions where loss of forests and soils is now high, it may be extremely difficult or impossible to restore forest ecosystems and soil productivity. Moreover, the driving forces, which are predominantly of a demographic and socioeconomic nature, do not yet seem to be lessening in strength. It can only be hoped that a wise policy of international cooperation and shared aims can cope with this problem in the future.


2007 ◽  
Vol 29 (3) ◽  
pp. 115-134 ◽  
Author(s):  
Gilbert C. Sigua ◽  
Mary J. Williams ◽  
Samuel W. Coleman

2015 ◽  
Vol 34 (2) ◽  
pp. 137-146
Author(s):  
Saulius Marcinkonis ◽  
Birutė Karpavičienė ◽  
Michael A. Fullen

AbstractThe aim of the present study is to evaluate the long-term effects of long-term piggery effluent application on semi-natural grassland ecotop-phytotop changes (above- and below-ground phytomass production, and carbon and nitrogen allocation in grassland communities) in relation to changes (or variability) in topsoil properties. Analysis of phytomass distribution in piggery effluent irrigated grassland communities showed that dry biomass yield varied from 1.7−5.3 t ha-1. Variability in soil and plant cover created a unique and highly unpredictable site specific system, where long-term anthropogenic influences established successor communities with specific characteristics of above- and below-ground biomass distribution. These characteristics depend more on grassland communities than on soil chemical properties. Families of grasses (Poaceae) dominated the surveyed communities and accumulated most carbon and least nitrogen, while legumes accumulated most nitrogen and lignin and least carbon. Carbon concentrations in above-ground biomass had minor variations, while accumulation of nitrogen was strongly influenced by species diversity (r = 0.94, n = 10, p <0.001) and production of above-ground biomass


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1213 ◽  
Author(s):  
Geoffrey C. Anderson ◽  
Shahab Pathan ◽  
James Easton ◽  
David J. M. Hall ◽  
Rajesh Sharma

Surface (0–10 cm) and subsoil (soil layers below 10 cm) acidity and resulting aluminum (Al) toxicity reduce crop grain yields. In South Western Australia (SWA), these constraints affect 14.2 million hectares or 53% of the agricultural area. Both lime (L, CaCO3) and gypsum (G, CaSO4) application can decrease the toxic effect of Al, leading to an increase in crop grain yields. Within the region, it is unclear if G alone or the combined use of L and G has a role in alleviating soil acidity in SWA, due to low sulfate S (SO4–S) sorption properties of the soil. We present results from three experiments located in the eastern wheatbelt of SWA, which examined the short-term (ST, 2 growing seasons), medium-term (MT, 3 growing seasons), and long-term (LT, 7 growing seasons over 10 years) effects of L and G on grain yield and plant nutrient concentrations. Despite the rapid leaching of SO4–S and no self-liming impact, it was profitable to apply G, due to the significant ST grain yield responses. The grain yield response to G developed even following relatively dry years, but declined over time due to SO4–S leaching. At the LT experimental site had received no previous L application, whereas, at the ST and MT sites, L had been applied by the grower over the previous 5–10 years. For the LT site, the most profitable treatment for wheat (Triticum aestivum L.) grain yield, was the combined application of 4 t L ha−1 with 2 t G ha−1. At this site, the 0–10 cm soil pHCaCl2 was 4.6, and AlCaCl2 was greater than 2.5 mg kg−1 in the 10–30 cm soil layer. In contrast, at the ST and MT sites, the pHCaCl2 of 0–10 cm soil layer was ≥5.5; it was only profitable to apply G to the MT site where the soil compaction constraint had been removed by deep ripping. The use of L increases soil pHCaCl2, resulting in the improved availability of anions, phosphorus (P) in the LT and molybdenum (Mo) at all sampling times, but reduced availability of cations zinc (Zn) in the LT and manganese (Mn) at all sampling. The application of G reduced Mo concentrations, due to the high SO4–S content of the soil.


2007 ◽  
Vol 7 (1-3) ◽  
pp. 211-223 ◽  
Author(s):  
Wendelin Weis ◽  
Roland Baier ◽  
Christian Huber ◽  
Axel Göttlein

Sign in / Sign up

Export Citation Format

Share Document