scholarly journals Urban surface temperature observations from ground-based thermography: intra- and inter-facet variability

Author(s):  
William Morrison ◽  
Simone Kotthaus ◽  
Sue Grimmond

<p>In this study (Morrison et al., 2021) ground based thermal cameras are used to observe urban surface temperatures (T<sub>s</sub>) with an unprecedented combination of: temporal and spatial resolution (5 min and ~ 0.5 m → 2.5 m), spatial extent (3.9 ha), instrument number (6 static cameras) and surface heterogeneity (mixed high rise and vegetation). The camera images are classified by geometry and material properties (surface orientation, albedo, solar irradiance, and shadow history). Unlike previous methods, pixels are objectively classified using sensor view modelling and a detailed three-dimensional surface model (430 m × 430 m extent). From detailed source area analysis, the cameras are shown to observe 9.5% of the study area. Across all camera pixels, the 5th - 95th percentile T<sub>s</sub> range is 37.5 K around midday. Roofs T<sub>s </sub>has the greatest diurnal range (290.6 K → 329.0 K). T<sub>s</sub> differences across sloped roofs with different sun-surface geomeetry reach 23.3 K. Walls of different cardinal orientations consistently differ by >10 K between 10:00 and 15:00. High temporal resolution (5 min) shadow tracking from the classified images is used to model cooling rates, where recently shaded (<30 min) ground can be 18.6 K warmer than equivalent unshaded T<sub>s</sub>. West walls remain warm past sunset and are 1.2 K warmer than north walls at 23:00 (~4 h after sunset). Recently shaded walls cool exponentially to ambient T<sub>s</sub> at a similar rate as the ground, but four times slower than roofs. The observaiton methods and observed T<sub>s</sub> characteristics are anticipated to have a wide range of applications (e.g. informing future ground-based thermogragy campaign setups, evaluation of urban surface energy balance models, ground-truthing of satellite thermal remote sensing).</p><p> </p><p><strong>Morrison, W., Kotthaus, S. and Grimmond, S. (2021) ‘Urban surface temperature observations from ground-based thermography: intra- and inter-facet variability’, Urban Climate, 35, p. 100748. doi: 10.1016/j.uclim.2020.100748.</strong></p><p> </p>

2017 ◽  
Vol 10 (10) ◽  
pp. 3635-3659 ◽  
Author(s):  
Jaroslav Resler ◽  
Pavel Krč ◽  
Michal Belda ◽  
Pavel Juruš ◽  
Nina Benešová ◽  
...  

Abstract. Urban areas are an important part of the climate system and many aspects of urban climate have direct effects on human health and living conditions. This implies that reliable tools for local urban climate studies supporting sustainable urban planning are needed. However, a realistic implementation of urban canopy processes still poses a serious challenge for weather and climate modelling for the current generation of numerical models. To address this demand, a new urban surface model (USM), describing the surface energy processes for urban environments, was developed and integrated as a module into the PALM large-eddy simulation model. The development of the presented first version of the USM originated from modelling the urban heat island during summer heat wave episodes and thus implements primarily processes important in such conditions. The USM contains a multi-reflection radiation model for shortwave and longwave radiation with an integrated model of absorption of radiation by resolved plant canopy (i.e. trees, shrubs). Furthermore, it consists of an energy balance solver for horizontal and vertical impervious surfaces, and thermal diffusion in ground, wall, and roof materials, and it includes a simple model for the consideration of anthropogenic heat sources. The USM was parallelized using the standard Message Passing Interface and performance testing demonstrates that the computational costs of the USM are reasonable on typical clusters for the tested configurations. The module was fully integrated into PALM and is available via its online repository under the GNU General Public License (GPL). The USM was tested on a summer heat-wave episode for a selected Prague crossroads. The general representation of the urban boundary layer and patterns of surface temperatures of various surface types (walls, pavement) are in good agreement with in situ observations made in Prague. Additional simulations were performed in order to assess the sensitivity of the results to uncertainties in the material parameters, the domain size, and the general effect of the USM itself. The first version of the USM is limited to the processes most relevant to the study of summer heat waves and serves as a basis for ongoing development which will address additional processes of the urban environment and lead to improvements to extend the utilization of the USM to other environments and conditions.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 483
Author(s):  
Nikola Žižlavská ◽  
Tomáš Mikita ◽  
Zdeněk Patočka

The article is on the effects of woody vegetation growing on the roadside on the temperature of the surface of cycle paths. The main hypothesis of the study is that vegetation has the effect of lowering the temperature of the surroundings in its shadow and thus improves the comfort of users of cycle paths in the summer months. The second hypothesis is to find out which type of road surface is most suitable for the thermal well-being of users. This goal was achieved by measuring the temperature of selected locations on cycle paths with different types of construction surfaces with nearby woody vegetation using a contactless thermometer over several days at regular intervals. The positions of the selected locations were measured using GNSS and the whole locality of interest was photographed using an unmanned aerial vehicle (UAV), or drone, and subsequently a digital surface model (DSM) of the area was created using a Structure from Motion (SfM) algorithm. This model served for the calculation of incident solar radiation during the selected days using the Solar Area Graphics tool with ArcGIS software. Subsequently, the effect of the shade of the surrounding vegetation on the temperature during the day was analysed and statistically evaluated. The results are presented in many graphs and their interpretation used to evaluate the effects of nearby woody vegetation and the type of road surface on the surrounding air temperature and the comfort of users of these routes. The results demonstrate the benefits of using UAVs for the purpose of modelling the course of solar radiation during the day, showing the effect of roadside vegetation on reducing the surface temperature of the earth’s surface and thus confirming the need for planting and maintaining such vegetation.


2013 ◽  
Vol 6 (1) ◽  
pp. 453-494 ◽  
Author(s):  
D. S. Moreira ◽  
S. R. Freitas ◽  
J. P. Bonatti ◽  
L. M. Mercado ◽  
N. M. É. Rosário ◽  
...  

Abstract. This article presents the development of a new numerical system denominated JULES-CCATT-BRAMS, which resulted from the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. The performance of this system in relation to several meteorological variables (wind speed at 10 m, air temperature at 2 m, dew point temperature at 2 m, pressure reduced to mean sea level and 6 h accumulated precipitation) and the CO2 concentration above an extensive area of South America is also presented, focusing on the Amazon basin. The evaluations were conducted for two periods, the wet (March) and dry (September) seasons of 2010. The statistics used to perform the evaluation included bias (BIAS) and root mean squared error (RMSE). The errors were calculated in relation to observations at conventional stations in airports and automatic stations. In addition, CO2 concentrations in the first model level were compared with meteorological tower measurements and vertical CO2 profiles were compared with aircraft data. The results of this study show that the JULES model coupled to CCATT-BRAMS provided a significant gain in performance in the evaluated atmospheric fields relative to those simulated by the LEAF (version 3) surface model originally utilized by CCATT-BRAMS. Simulations of CO2 concentrations in Amazonia and a comparison with observations are also discussed and show that the system presents a gain in performance relative to previous studies. Finally, we discuss a wide range of numerical studies integrating coupled atmospheric, land surface and chemistry processes that could be produced with the system described here. Therefore, this work presents to the scientific community a free tool, with good performance in relation to the observed data and re-analyses, able to produce atmospheric simulations/forecasts at different resolutions, for any period of time and in any region of the globe.


2008 ◽  
Vol 25 (2) ◽  
pp. 196-212 ◽  
Author(s):  
B. E. Sheppard ◽  
P. I. Joe

Abstract The Precipitation Occurrence Sensor System (POSS) is a small X-band Doppler radar originally developed by the Meteorological Service of Canada for reporting the occurrence, type, and intensity of precipitation from Automated Weather Observing Stations. This study evaluates POSS as a gauge for measuring amounts of both liquid and solid precipitation. Different precipitation rate estimation algorithms are described. The effect of different solid precipitation types on the Doppler velocity spectrum is discussed. Lacking any accepted reference for high temporal resolution rates, the POSS precipitation rate measurements are integrated over time periods ranging from 6 h to one day and validated against international and Canadian reference gauges. Data from a wide range of sites across Canada and for periods of several years are used. The statistical performance of POSS is described in terms of the distribution of ratios of POSS to reference gauge amounts (catch ratios). In liquid precipitation the median of the catch ratio distribution is 82% and the interquartile range was between −12% and 19% about the median. In solid precipitation the median is 90% and the interquartile range is between −17% and 24% about the median. The underestimation in both liquid and solid precipitation is shown to be a function of precipitation rate and phase. The effects of radome wetting, raindrop splashing, wind, and the radar “brightband” effect on the estimation of precipitation rates are discussed.


Author(s):  
J. Rosen ◽  
D. Johnstone ◽  
P. Sincock ◽  
A. E. Potts ◽  
D. Hourigan

Life extension and asset integrity of Floating Production Unit (FPU) moorings are issues of increasing importance for operators due to changing production requirements, the requirement to extend service life, and circumstances where the met-ocean Basis of Design (BOD) has increased significantly over the life of the field. Reliability methods are gaining increasing acceptance as increased computing power allows large numbers of simulations to be undertaken using realistic fully coupled models that are validated against prior experiments. When applied to the re-qualification and life extension of FPU moorings, particularly with regard to re-qualification and life extension of in-place moorings, reliability analysis offers considerable advantages over conventional deterministic return period design. This paper details the application of a reliability approach to re-qualification and life extension of a turret-moored FPU that had design met-ocean conditions increased significantly over the life of the field. It explores key elements of reliability analysis including the probabilistic characterisation of met-ocean conditions, adequate representation of vessel dynamics and mooring loads in a Response Surface Model, and a selection of algorithms to solve for the system probability of failure. Discussion points include the advantages of the explicit identification of the most likely failure scenario versus uncertainty as to whether the worst design case has been identified, and the potential for rapid reassessment of reliability for specific design conditions (such as a degraded mooring system or a system for which degradation is ongoing). The results of this study demonstrate the significant advantages to the industry conferred by adopting reliability methods in the re-certification and life extension of existing FPU moorings. In particular, the study highlights that conventional mooring code deterministic design methods, whilst adequate for original design purposes, lack sufficient fidelity to address the multi-faceted issue of re-assessment of notionally marginal legacy systems. For a degraded existing mooring, an application of these methods can demonstrate that the level of reliability of the system is still acceptable, whereas a conventional approach may produce an over-conservative indication that the mooring is non-compliant. Applicable to a wide range of FPUs requiring re-qualification or life extension, the techniques discussed also provide pointers to more efficient and reliable mooring design for not just existing, but also for new FPUs.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1362 ◽  
Author(s):  
Mustafa Berk Duygu ◽  
Zuhal Akyürek

Soil moisture content is one of the most important parameters of hydrological studies. Cosmic-ray neutron sensing is a promising proximal soil moisture sensing technique at intermediate scale and high temporal resolution. In this study, we validate satellite soil moisture products for the period of March 2015 and December 2018 by using several existing Cosmic Ray Neutron Probe (CRNP) stations of the COSMOS database and a CRNP station that was installed in the south part of Turkey in October 2016. Soil moisture values, which were inferred from the CRNP station in Turkey, are also validated using a time domain reflectometer (TDR) installed at the same location and soil water content values obtained from a land surface model (Noah LSM) at various depths (0.1 m, 0.3 m, 0.6 m and 1.0 m). The CRNP has a very good correlation with TDR where both measurements show consistent changes in soil moisture due to storm events. Satellite soil moisture products obtained from the Soil Moisture and Ocean Salinity (SMOS), the METOP-A/B Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), Advanced Microwave Scanning Radiometer 2 (AMSR2), Climate Change Initiative (CCI) and a global land surface model Global Land Data Assimilation System (GLDAS) are compared with the soil moisture values obtained from CRNP stations. Coefficient of determination ( r 2 ) and unbiased root mean square error (ubRMSE) are used as the statistical measures. Triple Collocation (TC) was also performed by considering soil moisture values obtained from different soil moisture products and the CRNPs. The validation results are mainly influenced by the location of the sensor and the soil moisture retrieval algorithm of satellite products. The SMAP surface product produces the highest correlations and lowest errors especially in semi-arid areas whereas the ASCAT product provides better results in vegetated areas. Both global and local land surface models’ outputs are highly compatible with the CRNP soil moisture values.


Sign in / Sign up

Export Citation Format

Share Document