scholarly journals Performance of the Precipitation Occurrence Sensor System as a Precipitation Gauge

2008 ◽  
Vol 25 (2) ◽  
pp. 196-212 ◽  
Author(s):  
B. E. Sheppard ◽  
P. I. Joe

Abstract The Precipitation Occurrence Sensor System (POSS) is a small X-band Doppler radar originally developed by the Meteorological Service of Canada for reporting the occurrence, type, and intensity of precipitation from Automated Weather Observing Stations. This study evaluates POSS as a gauge for measuring amounts of both liquid and solid precipitation. Different precipitation rate estimation algorithms are described. The effect of different solid precipitation types on the Doppler velocity spectrum is discussed. Lacking any accepted reference for high temporal resolution rates, the POSS precipitation rate measurements are integrated over time periods ranging from 6 h to one day and validated against international and Canadian reference gauges. Data from a wide range of sites across Canada and for periods of several years are used. The statistical performance of POSS is described in terms of the distribution of ratios of POSS to reference gauge amounts (catch ratios). In liquid precipitation the median of the catch ratio distribution is 82% and the interquartile range was between −12% and 19% about the median. In solid precipitation the median is 90% and the interquartile range is between −17% and 24% about the median. The underestimation in both liquid and solid precipitation is shown to be a function of precipitation rate and phase. The effects of radome wetting, raindrop splashing, wind, and the radar “brightband” effect on the estimation of precipitation rates are discussed.

2009 ◽  
Vol 17 (3) ◽  
Author(s):  
J. Saktioto ◽  
J. Ali ◽  
M. Fadhali

AbstractFiber coupler fabrication used for an optical waveguide requires lossless power for an optimal application. The previous research coupled fibers were successfully fabricated by injecting hydrogen flow at 1 bar and fused slightly by unstable torch flame in the range of 800–1350°C. Optical parameters may vary significantly over wide range physical properties. Coupling coefficient and refractive index are estimated from the experimental result of the coupling ratio distribution from 1% to 75%. The change of geometrical fiber affects the normalized frequency V even for single mode fibers. V is derived and some parametric variations are performed on the left and right hand side of the coupling region. A partial power is modelled and derived using V, normalized lateral phase constant u, and normalized lateral attenuation constant, w through the second kind of modified Bessel function of the l order, which obeys the normal mode and normalized propagation constant b. Total power is maintained constant in order to comply with the energy conservation law. The power is integrated through V, u, and w over the pulling length of 7500 µm for 1-D. The core radius of a fiber significantly affects V and power partially at coupling region rather than wavelength and refractive index of core and cladding. This model has power phenomena in transmission and reflection for an optical switch and tunable filter.


Abstract Using NOAA’s S-band High Power Snow-Level Radar, HPSLR, a technique for estimating the rain drop size distribution (DSD) above the radar is presented. This technique assumes the DSD can be described by a four parameter, generalized Gamma distribution (GGD). Using the radar’s measured average Doppler velocity spectrum and a value (assumed, measured, or estimated) of the vertical air motion, w, an estimate of the GGD is obtained. Four different methods can be used to obtain w. One method that estimates a mean mass-weighted raindrop diameter, Dm, from the measured reflectivity, Z, produces realistic DSDs compared to prior literature examples. These estimated DSDs provide evidence that the radar can retrieve the smaller drop sizes constituting the “drizzle” mode part of the DSD. This estimation technique was applied to 19 h of observations from Hankins, NC. Results support the concept that DSDs can be modeled using GGDs with a limited range of parameters. Further work is needed to validate the described technique for estimating DSDs in more varied precipitation types and to verify the vertical air motion estimates.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Bart M Demaerschalk ◽  
Robert D Brown ◽  
Virginia J Howard ◽  
MeeLee Tom ◽  
Mary E Longbottom ◽  
...  

Introduction: Careful selection and timely activation of clinical sites in multicenter clinical trials is critical for successful enrollment, subject safety, and generalizability of results. Methods: In the Carotid Revascularization and Medical Management for Asymptomatic Carotid Stenosis Trial (CREST-2), a multidisciplinary Site Selection Committee evaluated applicants referred via participation in CREST, CREST principal investigators (PIs) and other investigators, StrokeNet and industry partners. Data for consideration included performance metrics in CREST and other carotid trials and a site selection questionnaire containing information on the investigators as well as quantitative data on carotid procedures performed. Any FDA warning letters were reviewed. Results: The Committee met bi-weekly for 36 months (n=64 meetings). Applications from 176 sites between March 2014 and July 2016 were evaluated: 153 were approved, 7 are under Committee review, 5 were approved but withdrew, 5 were placed on a waiting list, and 6 were rejected. One-hundred-four sites have completed the regulatory and training requirements to randomize: 51 (49%) academic medical centers, 31 (30%) private hospital-based centers, 16 (15%) private office-based practices, and 6 (6%) Veterans Administration medical centers. The mean times from application-to- approval was 5.2 weeks (interquartile range, 1.9, 6.2), and from approval-to-randomization status was 46.7 weeks (interquartile range, 35.4, 51.7). Specialties of the 104 site PIs are vascular surgery for 35 (33.7%), cardiology for 30 (28.8%), neurology for 25 (24%), neurosurgery for 8 (7.7%), interventional radiology for 4 (3.8%), and interventional neuroradiology for 2 (1.9%). Conclusions: Careful site selection is time-consuming for prospective sites and for trial leadership. Times from application-to-site-approval were modest (mean = 5.2 weeks), in contrast to the times for completing regulatory and training requirements (mean = 46.7 weeks). However, subject enrollment by teams from a wide range of medical centers led by a multi-disciplinary cohort of PIs will promote the generalizability of trial results.


2020 ◽  
Vol 12 (9) ◽  
pp. 855-861
Author(s):  
Felix Rech ◽  
Kai Huang

AbstractFrom the prevention of natural disasters such as landslide and avalanches, to the enhancement of energy efficiencies in chemical and civil engineering industries, understanding the collective dynamics of granular materials is a fundamental question that are closely related to our daily lives. Using a recently developed multi-static radar system operating at 10 GHz (X-band), we explore the possibility of tracking a projectile moving inside a granular medium, focusing on possible sources of uncertainties in the detection and reconstruction processes. On the one hand, particle tracking with continuous-wave radar provides an extremely high temporal resolution. On the other hand, there are still challenges in obtaining tracer trajectories accurately. We show that some of the challenges can be resolved through a correction of the IQ mismatch in the raw signals obtained. Consequently, the tracer trajectories can be obtained with sub-millimeter spatial resolution. Such an advance can not only shed light on radar particle tracking, but also on a wide range of scenarios where issues relevant to IQ mismatch arise.


2016 ◽  
Vol 16 (2) ◽  
pp. 1139-1160 ◽  
Author(s):  
L. Xu ◽  
L. R. Williams ◽  
D. E. Young ◽  
J. D. Allan ◽  
H. Coe ◽  
...  

Abstract. The composition of PM1 (particulate matter with diameter less than 1 µm) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling, Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer) only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS) at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have undergone similar chemical processing as rBC in the atmosphere. Although the atomic O : C ratio of OOA is substantially larger than that of solid fuel OA and hydrocarbon-like OA, these three factors have similar volatility, which is inferred from the change in mass concentration after heating at 120 °C. Finally, we discuss the relationship between the mass fraction remaining (MFR) of OA after heating in the TD and atomic O : C of OA and find that particles with a wide range of O : C could have similar MFR after heating. This analysis emphasizes the importance of understanding the distribution of volatility and O : C in bulk OA.


2021 ◽  
Vol 4 ◽  
Author(s):  
Roman Zweifel ◽  
Sophia Etzold ◽  
David Basler ◽  
Reinhard Bischoff ◽  
Sabine Braun ◽  
...  

The TreeNet research and monitoring network has been continuously collecting data from point dendrometers and air and soil microclimate using an automated system since 2011. The goal of TreeNet is to generate high temporal resolution datasets of tree growth and tree water dynamics for research and to provide near real-time indicators of forest growth performance and drought stress to a wide audience. This paper explains the key working steps from the installation of sensors in the field to data acquisition, data transmission, data processing, and online visualization. Moreover, we discuss the underlying premises to convert dynamic stem size changes into relevant biological information. Every 10 min, the stem radii of about 420 trees from 13 species at 61 sites in Switzerland are measured electronically with micrometer precision, in parallel with the environmental conditions above and below ground. The data are automatically transmitted, processed and stored on a central server. Automated data processing (R-based functions) includes screening of outliers, interpolation of data gaps, and extraction of radial stem growth and water deficit for each tree. These long-term data are used for scientific investigations as well as to calculate and display daily indicators of growth trends and drought levels in Switzerland based on historical and current data. The current collection of over 100 million data points forms the basis for identifying dynamics of tree-, site- and species-specific processes along environmental gradients. TreeNet is one of the few forest networks capable of tracking the diurnal and seasonal cycles of tree physiology in near real-time, covering a wide range of temperate forest species and their respective environmental conditions.


2019 ◽  
Author(s):  
Katia Lamer ◽  
Bernat Puigdomènech Treserras ◽  
Zeen Zhu ◽  
Bradley Isom ◽  
Nitin Bharadwaj ◽  
...  

Abstract. Shallow oceanic precipitation variability is documented using 2nd generation radars located at the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic observatory: the Ka-band ARM zenith radar (KAZR2), the Ka-band scanning ARM cloud radar (KaSACR2) and the X-band scanning ARM precipitation radar (XSAPR2). First, the radars and measurement post-processing techniques, including sea clutter removal and calibration against collocated disdrometer and Global Precipitation Mission (GPM) observations are described. Then, we present how a combination of profiling radar and lidar observations can be used to estimate adaptive (in both time and height) parameters that relate radar reflectivity (Z) to precipitation rate (R) in the form Z = αRβ which we use to estimate precipitation rate over the domain observed by XSAPR2. Furthermore, Constant Altitude Plan Position Indicator (CAPPI) gridded XSAPR2 precipitation rate maps are also constructed. Hourly precipitation rate statistics estimated from the three radars differ; that is because KAZR2 is more sensitive to shallow virga and because XSAPR2 suffers from less attenuation that KaSACR2 and as such is best suited to characterize intermittent and mesoscale-organized precipitation. Further analysis reveals that precipitation rate statistics obtained by averaging 12 h of KAZR2 observations can be used to approximate that of a domain of 2500 km2 averaged over similar time periods. However, it was determined that KAZR2 is unsuitable to characterize domain average precipitation rate over shorter periods. But even more fundamentally, these results suggest that observations cannot produce objective domain precipitation estimate and that forward-simulators should be used to guide high temporal-resolution model evaluation studies.


2007 ◽  
Vol 24 (2) ◽  
pp. 125-140 ◽  
Author(s):  
B. E. Sheppard

Abstract The Precipitation Occurrence Sensor System (POSS) is a small Doppler radar originally designed by the Meteorological Service of Canada (MSC) to report the occurrence, type, and intensity of precipitation in automated observing stations. It is also used for real-time estimation of raindrop size distributions (DSDs). From the DSD, various rainfall parameters can be calculated and relationships established, such as between the radar reflectivity factor (Z) and the rainfall rate (R). Earlier work presented first-order estimates of the sampling errors for some POSS rainfall parameter estimates. This work combines a Monte Carlo simulation and “inverse problem” analysis to better estimate errors due to the specific sampling problems of this disdrometer type. The uncertainties are necessary to determine the statistical significance of differences between DSD estimates by the POSS and other collocated disdrometers, or between POSS measurements in different climatologies. Additionally, confidence limits can be assigned to regression coefficients for rainfall parameter relationships determined from POSS estimates. An example is given of the uncertainties in the coefficients of measured Z–R relationships.


2006 ◽  
Vol 134 (9) ◽  
pp. 2601-2611
Author(s):  
William Briggs ◽  
David Ruppert

Abstract Briggs and Ruppert recently introduced a new, easy-to-calculate economic skill/value score for use in yes/no forecast decisions, of which precipitation forecast decisions are an example. The advantage of this new skill/value score is that the sampling distribution is known, which allows one to perform hypothesis tests on collections of forecasts and to say whether a given skill/value score is significant or not. Here, the climate skill/value score is taken and extended to the case where the predicted series is first-order Markov in nature, of which, again, precipitation occurrence series can be an example. It is shown that, in general, Markov skill/value is different and more demanding than is persistence skill. Persistence skill is defined as improvement over forecasts that state that the next value in a series will equal the present value. It is also shown that any naive forecasts based solely on the Markov parameters is always at least as skillful/valuable as are persistence forecasts; in general, persistence forecasts should not be used. The distribution for the Markov skill score is presented, and examples of hypothesis testing for precipitation forecasts are given. These skill scores are graphed for a wide range of forecast/user loss functions, a process that makes their interpretation simple.


Sign in / Sign up

Export Citation Format

Share Document