scholarly journals A data-driven approach for lightning nowcasting with deep learning

Author(s):  
Amirhossein Mostajabi ◽  
Ehsan Mansouri ◽  
Pedram Pad ◽  
Marcos Rubinstein ◽  
Andrea Dunbar ◽  
...  

<p>Lightning is  responsible directly or indirectly, for significant human casualties and property damage worldwide. <sup>1,2</sup>  It can cause injury and death in humans and animals, ignite fires, affect and destroy electronic devices, and cause electrical surges and system failures in airplanes and rockets.<sup>3–5</sup> These severe and costly outcomes can be averted by predicting the lightning occurrence in advance and taking preventive actions accordingly. Therefore, a practical and fast lightning prediction method is of considerable value.</p><p>Lightning is formed in the atmosphere through the combination of complex dynamic and microphysical processes, making it difficult to predict its occurrence using analytical or probabilistic approaches. In this work, we aim at leveraging advances in machine learning, deep learning, and pattern recognition to develop a lightning nowcasting model. Current numerical weather models rely on lightning parametrization. These models suffer from two drawbacks; the sequential nature of the model limits the computation speed, especially for nowcasting, and the recorded data are only used in the parametrization step and not in the prediction.<sup>6,7</sup></p><p>To cope with these drawbacks, we propose to leverage the large amounts of available data to develop a fully data-driven approach with enhanced prediction speed based on deep neural networks. The developed lightning nowcasting model is based on a residual U-net architecture.<sup>8</sup> The model consists of two paths from the input to the output: (i) a highway path copying the input to the output in the same way as the persistent baseline model does, and (ii) a fully convolutional U-net which learns to adjust the former path to reach the desired output. The U-net itself consists of a contracting part with alternating convolution, and max pooling layers followed by an expanding part of alternating upsampling, convolution, and concatenation layers.<sup>9–11</sup></p><p>Our dataset consists of post-processed data of recorded lightning occurrences in 15-minute intervals over 60 days obtained from the GOES satellite over the Americas. We have optimized the model using data from the northern part of South America, a region characterized by high lightning activity. The model was then applied to other regions of the Americas. We are using 70-15-15% separation for training, validation, and test datasets. Upon completion of the training process, the model can achieve an overall F1 score of 70% with a lead time of 30 minutes over South America in fractions of a second. This is more than 25% increase in the F1 score compared to the persistent model which is used as our baseline forecast method.</p><p>To the best of our knowledge, our model is the first data-driven approach for lightning prediction. The developed model can pave the way to large-scale, efficient, and practical lightning prediction, which in turn can protect lives and save resources.</p>

Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 154
Author(s):  
Marcus Walldén ◽  
Masao Okita ◽  
Fumihiko Ino ◽  
Dimitris Drikakis ◽  
Ioannis Kokkinakis

Increasing processing capabilities and input/output constraints of supercomputers have increased the use of co-processing approaches, i.e., visualizing and analyzing data sets of simulations on the fly. We present a method that evaluates the importance of different regions of simulation data and a data-driven approach that uses the proposed method to accelerate in-transit co-processing of large-scale simulations. We use the importance metrics to simultaneously employ multiple compression methods on different data regions to accelerate the in-transit co-processing. Our approach strives to adaptively compress data on the fly and uses load balancing to counteract memory imbalances. We demonstrate the method’s efficiency through a fluid mechanics application, a Richtmyer–Meshkov instability simulation, showing how to accelerate the in-transit co-processing of simulations. The results show that the proposed method expeditiously can identify regions of interest, even when using multiple metrics. Our approach achieved a speedup of 1.29× in a lossless scenario. The data decompression time was sped up by 2× compared to using a single compression method uniformly.


2021 ◽  
Vol 10 (1) ◽  
pp. e001087
Author(s):  
Tarek F Radwan ◽  
Yvette Agyako ◽  
Alireza Ettefaghian ◽  
Tahira Kamran ◽  
Omar Din ◽  
...  

A quality improvement (QI) scheme was launched in 2017, covering a large group of 25 general practices working with a deprived registered population. The aim was to improve the measurable quality of care in a population where type 2 diabetes (T2D) care had previously proved challenging. A complex set of QI interventions were co-designed by a team of primary care clinicians and educationalists and managers. These interventions included organisation-wide goal setting, using a data-driven approach, ensuring staff engagement, implementing an educational programme for pharmacists, facilitating web-based QI learning at-scale and using methods which ensured sustainability. This programme was used to optimise the management of T2D through improving the eight care processes and three treatment targets which form part of the annual national diabetes audit for patients with T2D. With the implemented improvement interventions, there was significant improvement in all care processes and all treatment targets for patients with diabetes. Achievement of all the eight care processes improved by 46.0% (p<0.001) while achievement of all three treatment targets improved by 13.5% (p<0.001). The QI programme provides an example of a data-driven large-scale multicomponent intervention delivered in primary care in ethnically diverse and socially deprived areas.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. e1009315
Author(s):  
Ardalan Naseri ◽  
Junjie Shi ◽  
Xihong Lin ◽  
Shaojie Zhang ◽  
Degui Zhi

Inference of relationships from whole-genome genetic data of a cohort is a crucial prerequisite for genome-wide association studies. Typically, relationships are inferred by computing the kinship coefficients (ϕ) and the genome-wide probability of zero IBD sharing (π0) among all pairs of individuals. Current leading methods are based on pairwise comparisons, which may not scale up to very large cohorts (e.g., sample size >1 million). Here, we propose an efficient relationship inference method, RAFFI. RAFFI leverages the efficient RaPID method to call IBD segments first, then estimate the ϕ and π0 from detected IBD segments. This inference is achieved by a data-driven approach that adjusts the estimation based on phasing quality and genotyping quality. Using simulations, we showed that RAFFI is robust against phasing/genotyping errors, admix events, and varying marker densities, and achieves higher accuracy compared to KING, the current leading method, especially for more distant relatives. When applied to the phased UK Biobank data with ~500K individuals, RAFFI is approximately 18 times faster than KING. We expect RAFFI will offer fast and accurate relatedness inference for even larger cohorts.


Author(s):  
Jorge Pulpeiro Gonzalez ◽  
King Ankobea-Ansah ◽  
Elena Escuder Milian ◽  
Carrie M. Hall

Abstract The gas exchange processes of engines are becoming increasingly complex since modern engines leverage technologies including variable valve actuation, turbochargers, and exhaust gas recirculation. Control of these many devices and the underlying gas flows is essential for high efficiency engine concepts. If these processes are to be controlled and estimated using model-based techniques, accurate models are required. This work explores a model framework that leverages a data-driven model of the turbocharger along with submodels of the intercooler, intake and exhaust manifolds and engine processes to provide cylinder-specific predictions of the pressure and temperatures of the gases across the system. This model is developed and validated using data from a 2.0 liter VW turbocharged, direct-injection diesel engine and shown to provide accurate prediction of critical gas properties.


2016 ◽  
Vol 118 ◽  
pp. 193-203 ◽  
Author(s):  
Ehsan Taslimi Renani ◽  
Mohamad Fathi Mohamad Elias ◽  
Nasrudin Abd. Rahim

2018 ◽  
Vol 115 (37) ◽  
pp. 9300-9305 ◽  
Author(s):  
Shuo Wang ◽  
Erik D. Herzog ◽  
István Z. Kiss ◽  
William J. Schwartz ◽  
Guy Bloch ◽  
...  

Extracting complex interactions (i.e., dynamic topologies) has been an essential, but difficult, step toward understanding large, complex, and diverse systems including biological, financial, and electrical networks. However, reliable and efficient methods for the recovery or estimation of network topology remain a challenge due to the tremendous scale of emerging systems (e.g., brain and social networks) and the inherent nonlinearity within and between individual units. We develop a unified, data-driven approach to efficiently infer connections of networks (ICON). We apply ICON to determine topology of networks of oscillators with different periodicities, degree nodes, coupling functions, and time scales, arising in silico, and in electrochemistry, neuronal networks, and groups of mice. This method enables the formulation of these large-scale, nonlinear estimation problems as a linear inverse problem that can be solved using parallel computing. Working with data from networks, ICON is robust and versatile enough to reliably reveal full and partial resonance among fast chemical oscillators, coherent circadian rhythms among hundreds of cells, and functional connectivity mediating social synchronization of circadian rhythmicity among mice over weeks.


Sign in / Sign up

Export Citation Format

Share Document