Paleozoic subduction of the Mongol-Okhotsk oceanic plate: insight from the petrogenesis of Ordovician to Devonian granitic plutons in the Hangay Range, central Mongolia

Author(s):  
jiaqi Ling ◽  
pengfei Li

<p>Email: [email protected]; [email protected]</p><p> </p><p>The pre-Mesozoic subduction history of the Mongol-Okhotsk oceanic plate has been poorly understood. Here we conducted geochronological and geochemical studies on four granitic plutons in the westernmost Mongol-Okhotsk Orogen (Hangay Range), with an aim to understand their petrogenesis and role in the Paleozoic tectonic evolution of the Mongol-Okhotsk Orogen. Our geochronological results constrain four granitic plutons to be emplaced from middle Ordovician to early Devonian. Geochemically, the Ordovician pluton belongs to A2-type granites, and three Silurian to Devonian plutons show the characteristics of I-type granites. These granitic plutons were probably generated by partial melting of basaltic rocks in the lower crust given the high contents of Na<sub>2</sub>O and K<sub>2</sub>O. The negative ε<sub>Nd</sub>(t) values (-4.7 to -0.9) and variable ε<sub>Hf</sub>(t) values (-2.6 to +6.1) for the four granitic plutons suggest that ancient basement materials were possibly involved in the magma source. We further investigate the geodynamic origin of these plutons in the context of the Paleozoic tectonics of the Mongol-Okhotsk Orogen, and we conclude that they were probably formed in response to the Ordovician to Devonian subduction of the Mongol-Okhotsk oceanic plate.</p>


2003 ◽  
Vol 40 (2) ◽  
pp. 255-268 ◽  
Author(s):  
Sébastien Castonguay ◽  
Alain Tremblay

In the southern Quebec Appalachians, the early tectonic history of the Laurentian margin (Humber zone) comprises foreland-propagating, northwest-directed thrust faulting, nappe emplacement, and regional prograde metamorphism in response to the obduction of large ophiolitic nappes during the Taconian orogeny. In the internal Humber zone, this event is dated at 462 ± 3 Ma (late Middle Ordovician), which is interpreted to represent the timing of near-peak Taconian metamorphism. Superimposed hinterland-directed structures are accompanied by retrograde metamorphism and consist of back thrusts and normal faults, which respectively delimit the northwestern and southeastern limbs of the Sutton and Notre-Dame mountains anticlinoria, both salient structures of the internal Humber zone of southern Quebec. Geochronologic data on the timing of hinterland-directed deformation vary from 431 to 411 Ma. Two tectonic models are presented and discussed, which may account for the Silurian – Early Devonian evolution of the Laurentian margin: (1) back thrusting and syn- to post-compressional crustal extension in response to the tectonic wedging of basement-cored duplexes inducing delamination of supracrustal rocks; (2) tectonic exhumation of the internal Humber zone by extensional collapse. Evidence for Silurian – Early Devonian extensional tectonism in the Humber zone provides the basement infrastructures necessary for the creation and the onset of sedimentation in the Gaspé Belt basins (e.g., Connecticut Valley – Gaspé synclinorium). Several structural, metamorphic features in the internal Humber zone of the northwestern New England Appalachians yield analogous characteristics with those of southern Quebec and may have shared a similar Silurian – Early Devonian tectonic evolution.



2020 ◽  
Author(s):  
Huiying He ◽  
Peter Cawood ◽  
Yuejun Wang

<p>In Southeast Asia, establishing the origin and associated tectonic setting of Late Paleozoic-Early Mesozoic igneous rocks is complicated by structural overprinting and the complex tectonic evolution of the Paleotethyan regime. Hainan Island, located at the south-eastern margin of the Paleotethys, and lacking significant tectonic overprints is a key to understand amalgamation history of the Indochina and South China blocks and to constraining the tectonic evolution of Paleotethys ocean in southeast Asia.</p><p>The Late Paleozoic-Early Mesozoic record of igneous rocks on Hainan Island includes the following. 1) ca. 350 Ma island arc andesites and ca. 330 Ma metabasites, the latter with both MORB- and arc-like geochemical affinities, positive ε<sub>Nd</sub>(t) values of +5.86 – +9.85 and rare inherited zircons with a zircon age of 1400 Ma inferred to be derived from a MORB source with the input of a slab-derived component. Together with the ~350 Ma island arc andesites, the Carboniferous tectonic environment is supposed to be a continental back-arc basin setting. 2) Late Permian gneiss granitoids (272-252 Ma) characterized by a gneissic foliation and calc-alkaline I-type geochemical affinities with negative Nb-Ta and Ti anomalies, related to metasomatized mantle wedge modified by the sediment-derived component in a continental arc setting. 3) ca. 257 Ma arc-like andesites, which further validate a subduction-related setting. 4) Peraluminious Early-Middle Triassic massive granitoids (251–243 Ma) with slightly high A/CNK ratios, δ<sup>18</sup>O values (up to 11.75 ‰) and Sr/Y ratios, inferred to have formed in a compressive regime from a mixed source of greywacke and metabasite. 5) Middle-Late Triassic (242–225 Ma) high-K calc-alkaline granitoids with high zircon temperatures (842–867°C) and geochemical signatures of A-type granites. They show slightly low whole-rock ε<sub>Nd</sub>(t) and zircon ε<sub>Hf</sub>(t) values, suggestive of the derivation from a metabasite–greywacke source in an extensional setting. 6) ca. 240 Ma gabbro-dolerites showing enrichment in LILEs, depletion in HFSEs, negative ε<sub>Nd</sub> (t)-ε<sub>Hf</sub> (t) values (−8.45 to −1.05 and −5.9 to −2.7, respectively) and crustal-like δ<sup>18</sup>O values (7.26–8.70‰), it is implied that the Hainan Island entered into post-collisional environment in response to the asthenosphere upwelling shortly after the closure of back-arc basin.</p><p>Thus, Hainan Island provides a record of Carboniferous back-arc basin opening, followed by an extended Permian–Triassic history of subduction-related consumption leading to orogenic assembly and extensional collapse between the South China and Indochina blocks. Such a tempo-spatial pattern is consistent with that along the Song Ma–Ailaoshan suture zone rather than the magmatic history of eastern South China and indicates that the Paleotethys extended west to at least Hainan Island in the Late Paleozoic-Early Mesozoic.</p>



Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1248
Author(s):  
Youxin Chen ◽  
Shengqiang Zhu ◽  
Xianzhi Pei ◽  
Lei He ◽  
Jun Zhao ◽  
...  

The origin and tectonic implication of Early–Middle Devonian magmatism in the northern margin of YB (Yili Block) remain enigmatic and are important for understanding Late Paleozoic evolution of the Junggar Ocean and southern Kazakhstan Orocline. Here, we present the systematic study of whole-rock geochemical and Sr–Nd isotope features as well as U–Pb–Hf isotope characteristics of zircon crystals for newly identified Early Devonian volcanic rocks from the northern margin of YB. The volcanic rocks are composed of rhyolite, rhyolite porphyry, and rhyolitic tuff. Zircon U-Pb age dating indicates they were formed at ca. 407~418 Ma. They have high SiO2 (70.16–77.52 wt.%) and alkali (5.10–9.56 wt.%) contents, and high Zr + Nb + Ce + Y content (~456 ppm), indicative of A-type magma. Their relative depletion of Nb, Ta, and Ti, and enrichment of LILEs show arc affinity. Their low initial 87Sr/86Sr ratios (0.699708–0.709822) and negative εNd(t) values (−1.8 to −4.0) indicate a mainly continental magma source and their positive εHf(t)values (+6.13 to +14.81) are possibly due to the garnet effect. All these above reveal that volcanic rocks were generated by re-melting of lower crust under a high temperature condition, which was induced by long-lived heat accumulation with no or minimal basalt flux. Combined with active continental margin inference evidenced by contemporaneous sedimentary rocks, we attribute the generation of the volcanic rocks to a continental arc setting related to the southward subduction of Junggar oceanic crust. Thus, we infer the Early–Middle Devonian arc-related magmatic rocks in the northern margin of YB are eastward counterparts of the southern limb of the Devonian Volcanic Belt, which resulted from a relatively steady-state southward subduction.



1956 ◽  
Vol 63 (1) ◽  
pp. 37-70 ◽  
Author(s):  
R. H. Clark

SynopsisAethur's Seat is the remains of a dissected Lower Carboniferous volcano, from which were erupted a series of basaltic rocks representative of the province to which it belongs. The rocks occur as lavas, intrusions and tuffs, and include basalts of Dalmeny, Jedburgh, Dunsapie, Craiglockhart and Markle types, in addition to mugearite. For convenience the basalts of Dunsapie type have been subdivided into Normal and Feldspathic varieties.The volcano has been remapped; some minor departures from the six-inch Geological Survey map are recorded and certain changes in the numbering and classification of the lavas have been made.The petrographic characters of the various volcanic rocks are described in detail, with modal and chemical analyses. The composition of the parental magma of the volcano was probably very similar to that of Normal Dunsapie basalt. Markle and Craiglockhart types were produced as complementary differentiates of the parental liquid by a process of gravity differentiation, in which sinking of ferromagnesian crystals, particularly augites, played an important part. The basalts of Dalmeny and Jedburgh types, which in Arthur's Seat have strong chemical resemblances, probably represent only slightly differentiated parental magma. Concentrations of soda-rich volatiles produced intense albitisation in the Markle basalts and the mugearites. It is considered that the mugearites of Arthur's Seat crystallised initially as Jedburgh or Dalmeny types, and were altered to their present state during a deuteric phase.An attempt has been made to reconstruct the eruptive history of the volcano. The magma source appears to have been replenished with parental magma at least twice during the period of activity. The first and last eruptions were of Dunsapie basalt; the albitised products appeared at a fairly late stage.



1998 ◽  
Vol 35 (3) ◽  
pp. 237-252 ◽  
Author(s):  
Joseph B Whalen ◽  
Neil Rogers ◽  
Cees R van Staal ◽  
Frederick J Longstaffe ◽  
George A Jenner ◽  
...  

Middle Ordovician felsic magmatism contemporaneous with Bathurst Camp Pb-Zn volcanogenic massive sulphide(VMS) deposits consists of strongly altered volcanic to subvolcanic rocks, belonging to the Tetagouche Group, and relativelyunaltered granitoid plutons, which are divided into northern, central, and southern groups within the Miramichi Highlands.Calc-alkalic felsic volcanic rocks and northern plus central plutons have EpsilonNd(T) values ranging from -8.2 to -1.9 and -4.0 to +0.3, respectively. They exhibit within-plate-type volcanic and transitional I- to A-type granite geochemical characteristics.Granitoid rock Delta18O values range from +8.0 to +10.1‰. Published granitoid rock Pb isotopic compositions overlapunpublished galena data from Bathurst VMS deposits. Field, geochemical, and isotopic evidence indicate that these volcanicand granitoids rocks are consanguineous and mainly derived from Proterozoic orolder infracrustal sources. Alkalic felsic volcanic rocks, and associated alkaline basaltic rocks, are more juvenile (EpsilonNd(T) = +3.2 to +4.2) and were possibly derivedfrom slightly enriched mantle sources. Southern plutons exhibit continental arc-type features. The felsic magmatism and VMS deposits likely formed in an Okinawa-type back-arc basin developed from rifting the Early Ordovician Popelogan continentalarc, of which the southern plutons are remnants. Correlations between pluton groups and volcanic formations indicate that felsic magmatism was erupted through and onto the Miramichi Group. As most felsic volcanic formations lack plutonicequivalents, the Tetagouche Group probably does not represent disrupted slices of an originally conformable stratigraphic section. This supports a model in which thrust slices juxtapose remnants of volcanic centres erupted at different locationswithin a back-arc basin.



2019 ◽  
Author(s):  
James R. Worthington ◽  
◽  
Claire E. Bucholz ◽  
Uyanga Bold ◽  
Francis A. Macdonald ◽  
...  


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 604
Author(s):  
Evgeny V. Vetrov ◽  
Johan De Grave ◽  
Natalia I. Vetrova ◽  
Fedor I. Zhimulev ◽  
Simon Nachtergaele ◽  
...  

The West Siberian Basin (WSB) is one of the largest intracratonic Meso-Cenozoic basins in the world. Its evolution has been studied over the recent decades; however, some fundamental questions regarding the tectonic evolution of the WSB remain unresolved or unconfirmed by analytical data. A complete understanding of the evolution of the WSB during the Mesozoic and Cenozoic eras requires insights into the cooling history of the basement rocks as determined by low-temperature thermochronometry. We presented an apatite fission track (AFT) thermochronology study on the exposed parts of the WSB basement in order to distinguish tectonic activation episodes in an absolute timeframe. AFT dating of thirteen basement samples mainly yielded Cretaceous cooling ages and mean track lengths varied between 12.8 and 14.5 μm. Thermal history modeling based on the AFT data demonstrates several Mesozoic and Cenozoic intracontinental tectonic reactivation episodes affected the WSB basement. We interpreted the episodes of tectonic activity accompanied by the WSB basement exhumation as a far-field effect from tectonic processes acting on the southern and eastern boundaries of Eurasia during the Mesozoic–Cenozoic eras.



2009 ◽  
Vol 341 (2-3) ◽  
pp. 174-201 ◽  
Author(s):  
Michel Ballèvre ◽  
Valérie Bosse ◽  
Céline Ducassou ◽  
Pavel Pitra


Sign in / Sign up

Export Citation Format

Share Document