Geochemical and isotopic (Nd, O) data from Ordovician felsic plutonic and volcanic rocks of the Miramichi Highlands: petrogenetic and metallogenic implications for the Bathurst Mining Camp

1998 ◽  
Vol 35 (3) ◽  
pp. 237-252 ◽  
Author(s):  
Joseph B Whalen ◽  
Neil Rogers ◽  
Cees R van Staal ◽  
Frederick J Longstaffe ◽  
George A Jenner ◽  
...  

Middle Ordovician felsic magmatism contemporaneous with Bathurst Camp Pb-Zn volcanogenic massive sulphide(VMS) deposits consists of strongly altered volcanic to subvolcanic rocks, belonging to the Tetagouche Group, and relativelyunaltered granitoid plutons, which are divided into northern, central, and southern groups within the Miramichi Highlands.Calc-alkalic felsic volcanic rocks and northern plus central plutons have EpsilonNd(T) values ranging from -8.2 to -1.9 and -4.0 to +0.3, respectively. They exhibit within-plate-type volcanic and transitional I- to A-type granite geochemical characteristics.Granitoid rock Delta18O values range from +8.0 to +10.1‰. Published granitoid rock Pb isotopic compositions overlapunpublished galena data from Bathurst VMS deposits. Field, geochemical, and isotopic evidence indicate that these volcanicand granitoids rocks are consanguineous and mainly derived from Proterozoic orolder infracrustal sources. Alkalic felsic volcanic rocks, and associated alkaline basaltic rocks, are more juvenile (EpsilonNd(T) = +3.2 to +4.2) and were possibly derivedfrom slightly enriched mantle sources. Southern plutons exhibit continental arc-type features. The felsic magmatism and VMS deposits likely formed in an Okinawa-type back-arc basin developed from rifting the Early Ordovician Popelogan continentalarc, of which the southern plutons are remnants. Correlations between pluton groups and volcanic formations indicate that felsic magmatism was erupted through and onto the Miramichi Group. As most felsic volcanic formations lack plutonicequivalents, the Tetagouche Group probably does not represent disrupted slices of an originally conformable stratigraphic section. This supports a model in which thrust slices juxtapose remnants of volcanic centres erupted at different locationswithin a back-arc basin.

1987 ◽  
Vol 24 (12) ◽  
pp. 2551-2567 ◽  
Author(s):  
Osamu Ujike ◽  
A. M. Goodwin

Felsic magma petrogenesis was studied by analyzing 24 stratigraphically controlled Archean andesite-to-rhyolite lava flows of both tholeiitic and calc-alkalic affinity from the upper Noranda Subgroup, Quebec, using instrumental neutron activation and X-ray fluorescence techniques. The lavas have moderate values of [La/Yb]N (0.9–3.8) and low values of 100 × Th/Zr (~1). According to calculations following batch partial melting and Rayleigh fractional crystallization models, both the calc-alkalic and tholeiitic felsic volcanic rocks are probably products of shallow-level fractional crystallization of mafic parental magmas formed respectively by lower (~7 % for calc-alkalic) and higher (~14% for tholeiitic) degrees of partial melting of a primitive mantle source.Contribution to the magma genesis from plausible crustal materials was negligible. A back-arc-type diapirism is geochemically suggested for the tectonic model of origin of Noranda felsic magmas, in conformity with geological observations. Felsic volcanic rocks with compositions analogous to the studied samples exist in several other Archean terrains of the Canadian Shield, suggesting thereby that the late Archean sialic crust was at least in part produced by volcanic rocks ultimately derived from the primitive mantle.


2019 ◽  
Vol 56 (5) ◽  
pp. 433-451
Author(s):  
Hernan Ugalde ◽  
William A. Morris ◽  
Cees van Staal

The Bathurst Mining Camp (BMC) is one of Canada’s oldest mining districts for volcanogenic massive sulphide (VMS) deposits. Most of the 46 known deposits were discovered in the 1950s using a combination of geological and geophysical methods. However, renewed exploration efforts over the past 15 years have not been as successful as one would expect given the level of expenditure of the camp. Nevertheless, this has created a large database of high resolution airborne geophysical data (magnetics, electromagnetics, radiometrics, and full tensor gravity gradiometry) which makes Bathurst a unique case. We show data compilation and map view interpretation, followed by two-and-a-half-dimensional (2.5D) gravity and magnetic modelling. From this, we provide constraints on the folded structure of the mafic and felsic volcanic units, and we interpret a large gravity anomaly in the southeast as a possible ophiolite or a dense thick package of basaltic rocks. Finally, we show an example of 3D modelling in the northwestern part of the camp, where we combine map view interpretation with section-based modelling and 3D geophysical inversion.


2003 ◽  
Vol 40 (1) ◽  
pp. 77-97 ◽  
Author(s):  
Stephen J Piercey ◽  
James K Mortensen ◽  
Robert A Creaser

Devonian–Mississippian felsic rocks from the Finlayson Lake region have variable geochemical and Nd isotopic characteristics that provide insights into the tectonic and metallogenic evolution of the Yukon–Tanana terrane (YTT), and the northern Cordillera. Late Devonian (~365–360 Ma) calc-alkaline and tholeiitic arc felsic rocks in the mafic-dominated Fire Lake unit yield εNd350 = –4.8 and +0.1, respectively, and have 1.49–1.94 Ga depleted mantle model ages (TDM). Devonian–Mississippian (~360–356 Ma) felsic volcanic (Kudz Ze Kayah unit, Wolverine succession) and intrusive rocks (Grass Lakes suite) associated with volcanogenic massive sulphide (VMS) deposits have εNd350 = –7.8 to –9.5 with TDM = 1.59–2.25 Ga. A granitoid sample from the Early Mississippian (~350–345 Ma) Simpson Range plutonic suite has εNd350 = –12.9 and TDM = 2.01 Ga, similar to previously reported values for this suite. The VMS-associated Grass Lakes suite of granitoids has higher high field strength element (HFSE) and rare-earth element (REE) contents, and higher Zr/Sc, Zr/TiO2, Nb/La, and Zr/La values relative to the Simpson Range plutonic suite; these geochemical features are similar to coeval VMS-associated felsic volcanic rocks in the Kudz Ze Kayah unit. The identification of similar HFSE–REE-enriched felsic volcanic and subvolcanic intrusive rocks may aid in delineating prospective regions for VMS mineralization in the YTT and other continental-margin arc to back-arc environments. The geochemical and Nd isotopic data for these YTT felsic rocks suggest that they reflect episodic mid-Paleozoic arc (Fire Lake unit; Simpson Range plutonic suite) and back-arc magmatism (Kudz Ze Kudz unit; Wolverine succession) built upon a transitional basement with variable, but significant, influence from evolved (Proterozoic) crustal materials.


1978 ◽  
Vol 15 (2) ◽  
pp. 207-219 ◽  
Author(s):  
R. E. S. Whitehead ◽  
W. D. Goodfellow

The volcanic rocks of the Tetagouche Group are predominantly dacitic to rhyolitic pyroclastics and lavas; mafic alkaline and tholeiitic volcanic rocks are less abundant. Lavas representing the intermediate range (such as andesites) are uncommon.As a consequence of intense Na2O and K2O metasomatism, the mafic volcanic rocks have been classified on the basis of relatively immobile elements such as Ti, Y, Zr, Nb, Ni and Cr.By reference to volcanic suites described elsewhere for varying geologic and tectonic environments, the Tetagouche Group appears to represent two geologic environments. It is proposed that the deposition of tholeiitic and alkaline basalts accompanied the rifting associated with the opening of the Proto-Atlantic, which began during Hadrynian times. However the calc-alkaline felsic volcanic rocks were deposited on the top of the basaltic sequence along a mature island arc system that developed with the closing of the Proto-Atlantic during Middle Ordovician time.


2020 ◽  
Vol 35 (2) ◽  
Author(s):  
Noor CD Aryanto ◽  
Hananto Kurnio

The bathymetry, petrology, marine magnetic, and seismic-SBP data have identified the northwest-southeast direction submarine ridge that shows hydrothermal activity. This activity occurred through Mount Baruna Komba, Abang Komba, and Ibu Komba. The volcanic rocks are andesite basaltic lava flows, tuff, and pumice. The andesite basaltic lava shows porphyritic, intergranular, intersertal to glomeroporphyritic textures. The rock composes anhedral minerals of k-feldspar, plagioclase, and pyroxene. These minerals present in small-sized, short prismatic dispersed in very fine groundmass minerals or glasses. Most of the volcanic rocks have experienced various degrees of alteration. The k-feldspar and plagioclase are most dominantly transformed into sericite, clay mineral, carbonate, epidote and oxide mineral, opaque mineral, and secondary plagioclase through the albitization process, while pyroxene replaced by chlorite. Other minerals are biotite and quartz, and base metals are present Cu, Zn, Ag, As, Pb, and gold. Mineralization categorizes as the phyllic zone, sub-prophylithic zone, and phyllic-potassic zone that formed at a temperature range of 250-400oC. The submarine hydrothermal alteration in the Komba Ridge is associated with a volcanogenic sulphide deposit controlled by crust thinning due to the crust rifts in the back-arc tectonic setting.


2001 ◽  
Vol 38 (6) ◽  
pp. 889-907 ◽  
Author(s):  
Kate MacLachlan ◽  
Brian H O'Brien ◽  
Greg R Dunning

The Wild Bight Group and correlative plutonic rocks of the South Lake Igneous Complex comprise one of the accreted, Ordovician, peri-Gondwanan, oceanic terranes of the Newfoundland Appalachians. Recent field work and isotopic ages from the eastern Wild Bight Group require that the stratigraphic sequence be redefined. A package of bimodal volcanic rocks, which forms the oldest part of the group and contains all of its volcanogenic massive sulphide deposits, is redefined as the Glovers Harbour Formation. This formation is correlative with intra-oceanic ophiolitic sequences elsewhere in the Exploits Subzone. Previous stratigraphic nomenclature for the upper Wild Bight Group is largely retained, although the lithological variation within and spatial distribution of the Omega Point, Seal Bay Brook, and Pennys Brook formations are revised, and the Side Harbour Formation is included as part of the Seal Bay Brook Formation. The upper Wild Bight Group is interpreted to represent a second and distinct arc sequence that formed on the Gondwanan continental margin. There is a ca. 10 million-year hiatus in volcanic activity between the Glovers Harbour Formation and upper Wild Bight Group, although marine sedimentation was likely continuous during this time. This hiatus corresponds with Penobscot deformation and obduction of Exploits Subzone ophiolites onto the Gander Zone farther to the east and south. The Glovers Harbour Formation is correlated with the Tea Arm and Saunders Cove formations of the Exploits Group, whereas the upper Wild Bight Group can be correlated in some detail with the New Bay and Lawrence Head formations. The upper Wild Bight Group and correlative rocks of the Exploits Group are interpreted to represent the arc and back arc, respectively, of the same Middle Ordovician arc system.


2020 ◽  
Vol 157 (11) ◽  
pp. 1781-1799
Author(s):  
Qian Zhi ◽  
Yongjun Li ◽  
Fenghao Duan ◽  
Lili Tong ◽  
Jun Chen ◽  
...  

AbstractWest Junggar in the southwestern Central Asian Orogenic Belt is a critical area for the study of the Junggar oceanic basin and may also reveal tectonic evolutionary events before the final closure of the Palaeo-Asian Ocean. The sedimentary formations and paragenetic associations of the Upper Carboniferous Chengjisihanshan Formation in southern West Junggar jointly reveal a back-arc basin setting with zircon U–Pb ages of 313–310 Ma for the basaltic rocks. Geochemically, the basaltic rocks are tholeiitic with low SiO2 (47.76–52.06 wt %) and K2O (0.05–0.74 wt %) but high MgO (6.55–7.68 wt %) contents and Mg no. (52.9–58.9) values. They display slightly flat rare earth element patterns with weak positive Eu anomalies, and show enrichments in large ion lithophile elements relative to high field strength elements with negative Nb and Ta anomalies, exhibiting both N-MORB-like and arc-like signatures, similar to the back-arc basin basalt from the Mariana Trough. The high positive zircon εHf(t) and bulk εNd(t) values as well as high initial Pb isotopes, together with relatively high Sm/Yb and slightly low Th/Ta ratios imply a depleted spinel lherzolitic mantle source metasomatized by slab-derived fluids. The field and geochemical data jointly suggest that the volcanic rocks within the Chengjisihanshan Formation were formed in an intra-oceanic back-arc basin above the northwestward subduction of the Junggar oceanic lithosphere in southern West Junggar. The confirmation of the Late Carboniferous back-arc basin basalts, together with other geological observations, indicate that an arc-basin evolutionary system still existed in southern West Junggar at c. 310 Ma, and the Junggar Ocean closed after Late Carboniferous time.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 826
Author(s):  
Emilio Pascual ◽  
Teodosio Donaire ◽  
Manuel Toscano ◽  
Gloria Macías ◽  
Christian Pin ◽  
...  

VMS deposits in the Iberian Pyrite Belt (IPB), Spain and Portugal, constitute the largest accumulation of these deposits on Earth. Although several factors account for their genetic interpretation, a link between volcanism and mineralization is generally accepted. In many VMS districts, research is focused on the geochemical discrimination between barren and fertile volcanic rocks, these latter being a proxy of VMS mineralization. Additionally, the volcanological study of igneous successions sheds light on the environment at which volcanic rocks were emplaced, showing an emplacement depth consistent with that required for VMS formation. We describe a case on the El Almendro–Villanueva de los Castillejos (EAVC) succession, Spanish IPB, where abundant felsic volcanic rocks occur. According to the available evidence, their geochemical features, εNd signature and U–Pb dates suggest a possible link to VMS deposits. However, (paleo)volcanological evidence here indicates pyroclastic emplacement in a shallow water environment. We infer that such a shallow environment precluded VMS generation, a conclusion that is consistent with the absence of massive deposits all along this area. We also show that this interpretation lends additional support to previous models of the whole IPB, suggesting that compartmentalization of the belt had a major role in determining the sites of VMS deposition.


Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-22
Author(s):  
Jialin Wang ◽  
Chaodong Wu ◽  
Zhuang Li ◽  
Tianqi Zhou ◽  
Yanxi Zhou ◽  
...  

Abstract In this paper, we present new petrological, zircon U–Pb–Hf isotopic, bulk-rock geochemical, and Sr–Nd isotopic data for the rocks from the Pennsylvanian Liushugou and Qijiagou Formations, Bogda Mountains (BMs), northwest China. The new data help in understanding the petrogenesis and geodynamic background of the two formations, further constraining the evolution of BMs during the Pennsylvanian. The eastern Liushugou Formation is composed mainly of bimodal volcanic rocks, while the western Liushugou Formation is dominated by pillow basalts with interstitial limestones, peperites, and pyroclastic rocks. The Qijiagou Formation consists principally of bioclastic limestones, peperites, and volcanic and volcaniclastic rocks with turbidites. Depositional environment analyses of the Liushugou and Qijiagou Formations reveal subaqueous volcanism and a progressively deepening shallow marine environment with times. Zircon LA-ICP-MS U–Pb dating of felsic volcanic rocks from the Liushugou Formation indicates that the subaqueous volcanism occurred at ca. 310–302 Ma, viz., the Pennsylvanian era. The basaltic rocks from the Liushugou and Qijiagou Formations are high-K calc-alkaline, enriched in light rare earth elements and large-ion lithophile elements, and depleted in high-field-strength elements (Nb, Ta, and Ti). The above characteristics, together with their depleted isotopic signature (εNdt=3.0-8.1, εHft=8.0-15.6, and ISr=0.703-0.707), suggest the derivation from a depleted mantle source metasomatized by slab-derived fluids and sediment-derived melts. Most felsic volcanic rocks of the high-K calc-alkaline to shoshonite series from the Liushugou and Qijiagou Formations show features of the A2-type granites and have similar trace and isotopic composition to the basaltic rocks, which were probably generated from the partial melting of juvenile continental crust. Combining the newly acquired data with the regional geology, we propose that the Pennsylvanian volcanic and sedimentary rocks in the BMs were formed in a series of postcollisional rift basins which were related to local strike-slip faulting. Moreover, the volcanic rocks in the east were derived from a relatively deeper mantle source (thick lithosphere) due to their smaller rifting.


Sign in / Sign up

Export Citation Format

Share Document