scholarly journals Sea-level rise along the Emilia-Romagna coast (Northern Italy) at 2100: scenarios and impacts

Author(s):  
Luisa Perini ◽  
Lorenzo Calabrese ◽  
Paolo Luciani ◽  
Marco Olivieri ◽  
Gaia Galassi ◽  
...  

Abstract. As a consequence of climate change and human-induced land subsidence, coastal zones are directly impacted by sea-level rise. In some particular areas, the effects on the ecosystem and the urbanisation are particularly enhanced. We focus on the Emilia-Romagna coastal plain in Northern Italy, bounded by the Po river mouth to the north and by the Apennines to the south. The plain is ~ 130 km long and is characterised by wide areas below sea level, in part reclaimed wetlands. In this context, several morphodynamic factors make the shore and back-shore unstable. During next decades, the combined effects of land subsidence and of the sea-level rise in consequence of climate change are expected to enhance the shoreline instability, leading to a further retreat. The consequent loss of beaches would impact the economy of the region, tightly connected with tourism infrastructures. Furthermore, the loss of wetlands and dunes would threaten the ecosystem, crucial for the preservation of life and environment. These specific conditions show the importance of a precise definition of the possible local impacts of the ongoing and future climate variations. The aim of this work is the characterisation of vulnerability in different sectors of the coastal plain and the recognition of the areas in which human intervention is urgently required. The IPCC AR5 sea-level scenarios are merged with new high resolution terrain models, current data for local subsidence and predictions of a flooding model (in_CoastFlood) to develop different scenarios for the impact of sea-level rise to year 2100. First, the potential land loss due to the combined effect of subsidence and sea-level rise is extrapolated. Second, the increase of floodable areas in consequence of storm surges is quantitatively determined. The results are expected to support the regional mitigation and adaptation strategies designed in response to climate change.

2017 ◽  
Vol 17 (12) ◽  
pp. 2271-2287 ◽  
Author(s):  
Luisa Perini ◽  
Lorenzo Calabrese ◽  
Paolo Luciani ◽  
Marco Olivieri ◽  
Gaia Galassi ◽  
...  

Abstract. As a consequence of climate change and land subsidence, coastal zones are directly impacted by sea-level rise. In some particular areas, the effects on the ecosystem and urbanisation are particularly enhanced. We focus on the Emilia-Romagna (E-R) coastal plain in Northern Italy, bounded by the Po river mouth to the north and by the Apennines to the south. The plain is  ∼ 130 km long and is characterised by wide areas below mean sea level, in part made up of reclaimed wetlands. In this context, several morphodynamic factors make the shore and back shore unstable. During next decades, the combined effects of land subsidence and of the sea-level rise as a result of climate change are expected to enhance the shoreline instability, leading to further retreat. The consequent loss of beaches would impact the economy of the region, which is tightly connected with tourism infrastructures. Furthermore, the loss of wetlands and dunes would threaten the ecosystem, which is crucial for the preservation of life and the environment. These specific conditions show the importance of a precise definition of the possible local impacts of the ongoing and future climate variations. The aim of this work is the characterisation of vulnerability in different sectors of the coastal plain and the recognition of the areas in which human intervention is urgently required. The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) sea-level scenarios are merged with new high-resolution terrain models, current data for local subsidence and predictions of the flooding model in_CoastFlood in order to develop different scenarios for the impact of sea-level rise projected to year 2100. First, the potential land loss due to the combined effect of subsidence and sea-level rise is extrapolated. Second, the increase in floodable areas as a result of storm surges is quantitatively determined. The results are expected to support the regional mitigation and adaptation strategies designed in response to climate change.


2021 ◽  
Vol 23 (2-3) ◽  
pp. 115-132
Author(s):  
Łukasz Kułaga

Abstract The increase in sea levels, as a result of climate change in territorial aspect will have a potential impact on two major issues – maritime zones and land territory. The latter goes into the heart of the theory of the state in international law as it requires us to confront the problem of complete and permanent disappearance of a State territory. When studying these processes, one should take into account the fundamental lack of appropriate precedents and analogies in international law, especially in the context of the extinction of the state, which could be used for guidance in this respect. The article analyses sea level rise impact on baselines and agreed maritime boundaries (in particular taking into account fundamental change of circumstances rule). Furthermore, the issue of submergence of the entire territory of a State is discussed taking into account the presumption of statehood, past examples of extinction of states and the importance of recognition in this respect.


2017 ◽  
Vol 17 (9) ◽  
pp. 1559-1571 ◽  
Author(s):  
Yann Krien ◽  
Bernard Dudon ◽  
Jean Roger ◽  
Gael Arnaud ◽  
Narcisse Zahibo

Abstract. In the Lesser Antilles, coastal inundations from hurricane-induced storm surges pose a great threat to lives, properties and ecosystems. Assessing current and future storm surge hazards with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave–current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique under present climate or considering a potential sea level rise. Results confirm that the wave setup plays a major role in the Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge – up to 100 % in some cases. The nonlinear interactions of sea level rise (SLR) with bathymetry and topography are generally found to be relatively small in Martinique but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.


2017 ◽  
pp. 302-313
Author(s):  
Saon Ray

This chapter discusses what constitutes adaptation responses by firms in the face of climate change. There are four integral components of adaptation activities undertaken by firms: assessment of risk, understanding of vulnerability, understanding the regulatory barriers to overcome the vulnerability, and, finally, adoption of policies to overcome the vulnerability. While it is easy to understand these components separately, their interdependencies make the overall picture more complicated. Also complicating the issue is the fact that most small and medium firms do not have the capacity and resources to predict the impact of such changes on their operations, and hence, to quickly make the adjustments necessary to overcome them. The response of firms also depends on the nature of the climate risk they face, whether it is sea-level rise, or temperature rise.


2017 ◽  
Author(s):  
Yann Krien ◽  
Bernard Dudon ◽  
Jean Roger ◽  
Gaël Arnaud ◽  
Narcisse Zahibo

Abstract. In the Lesser Antilles, coastal inundations from hurricane-induced storm surges cause great threats to lives, properties, and ecosystems. Assessing current and future storm surge hazard with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave-current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique, under present climate or considering a potential sea-level rise. Results confirm that the wave setup plays a major role in Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge, up to 100 % in some cases. The non-linear interactions of sea level rise with bathymetry and topography are generally found to be relatively small in Martinique, but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles, and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.


2019 ◽  
Vol 7 (10) ◽  
pp. 352 ◽  
Author(s):  
Lopes ◽  
Lopes ◽  
Dias

Climate change and global sea-level rise are major issues of the 21st century. The main goal of this study is to assess the physical and biogeochemical status of the Ria de Aveiro lagoon (Portugal) under future climate scenarios, using a coupled physical/ eutrophication model. The impact on the lagoon ecosystem status of the mean sea level rise (MSLR), the amplitude rise of the M2 tidal constituent (M2R), the changes in the river discharge, and the rising of the air temperature was investigated. Under MSLR and M2R, the results point to an overall salinity increase and water temperature decrease, revealing ocean water dominance. The main lagoon areas presented salinity values close to those of the ocean waters (~34 PSU), while a high range of salinity was presented for the river and the far end areas (20–34 PSU). The water temperature showed a decrease of approximately 0.5–1.5 °C. The responses of the biogeochemical variables reflect the increase of the oceanic inflow (transparent and nutrient-poor water) or the reduction of the river flows (nutrient-rich waters). The results evidenced, under the scenarios, an overall decreasing of the inorganic nitrogen concentration and the carbon phytoplankton concentrations. A warm climate, although increasing the water temperature, does not seem to affect the lagoon’s main status, at least in the frame of the model used in the study.


2020 ◽  
Author(s):  
Benjamin Horton ◽  
Nicole Khan ◽  
Niamh Cahill ◽  
Janice Lee ◽  
Tim Shaw ◽  
...  

<p>Sea-level rise projections and knowledge of their uncertainties are vital to make informed mitigation and adaptation decisions. To elicit expert judgments from members of the scientific community regarding future global mean sea-level (GMSL) rise and its uncertainties, we repeated a survey originally conducted five years ago. Under Representative Concentration Pathway (RCP) 2.6, 106 experts projected a likely (at least 66% probability) GMSL rise of 0.30–0.65 m by 2100, and 0.54–2.15 m by 2300, relative to 1986–2005. Under RCP 8.5, the same experts projected a likely GMSL rise of 0.63–1.32 m by 2100, and 1.67–5.61 m by 2300. Expert projections for 2100 are similar to those from the original survey, although the projection for 2300 has extended tails and is higher than the original survey. Experts give a likelihood of 42% (original survey) and 45% (current survey) that under the high emissions scenario GMSL rise will exceed the upper bound (0.98 m) of the likely (i.e. an exceedance probability of 17%) range estimated by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Responses to open-ended questions suggest that the increases in upper-end estimates and uncertainties arose from recent influential studies about the impact of marine ice cliff instability on the meltwater contribution to GMSL rise from the Antarctic Ice Sheet.</p>


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 13
Author(s):  
Weiwei Xie ◽  
Bo Tang ◽  
Qingmin Meng

Fast urbanization produces a large and growing population in coastal areas. However, the increasing rise in sea levels, one of the most impacts of global warming, makes coastal communities much more vulnerable to flooding than before. While most existing work focuses on understanding the large-scale impacts of sea-level rise, this paper investigates parcel-level property impacts, using a specific coastal city, Tampa, Florida, USA, as an empirical study. This research adopts a spatial-temporal analysis method to identify locations of flooded properties and their costs over a future period. A corrected sea-level rise model based on satellite altimeter data is first used to predict future global mean sea levels. Based on high-resolution LiDAR digital elevation data and property maps, properties to be flooded are identified to evaluate property damage cost. This empirical analysis provides deep understanding of potential flooding risks for individual properties with detailed spatial information, including residential, commercial, industrial, agriculture, and governmental buildings, at a fine spatial scale under three different levels of global warming. The flooded property maps not only help residents to choose location of their properties, but also enable local governments to prevent potential sea-level rising risks for better urban planning. Both spatial and temporal analyses can be easily applied by researchers or governments to other coastal cities for sea-level rise- and climate change-related urban planning and management.


2021 ◽  
Vol 22 (2) ◽  
pp. 183-195
Author(s):  
Evgeniia A. Kostianaia ◽  
Andrey G. Kostianoy ◽  
Mikhail A. Scheglov ◽  
Aleksey I. Karelov ◽  
Alexander S. Vasileisky

Abstract This article considers various aspects of the impact of climate change on the railway infrastructure and operations. A brief international overview and the importance of this issue for Russia are given. Temperature effects, permafrost thawing, strong winds, floods and sea level rise, long-term effects, and adaptation measures are discussed. In conclusion, the authors give several recommendations on further research in this area, and highlight that special attention should be given to the areas in the Russian Federation which already face or might soon experience damage from storm events or flooding and sea level rise, namely Kaliningrad Region on the Baltic Sea, the area between Tuapse and Adler in Krasnodar Region on the Black Sea, and on Sakhalin Island from the side of the Sea of Japan.


Sign in / Sign up

Export Citation Format

Share Document