The Science of Space Weather: From Bit Flips to Exoplanets

Author(s):  
Janet G Luhmann

<p>While the term ‘space weather’ remains to some synonymous with operational anomalies on spacecraft, communications interruptions, and other practical matters, its broader implications extend across the EGU and beyond. Much of the science underlying space weather has to do with how our star, the Sun, affects the space environment at Earth’s orbit. We are lucky to be living at a time where information from both remote sensing (especially imaging at visible, x-ray and EUV wavelengths) and in-situ measurements (of plasmas, magnetic fields, and energetic particles) have provided unprecedented pictures of the Sun and knowledge of its extended atmosphere, the solar wind. Building on early forays into interplanetary space and deployments of coronagraphs with the Helios and SMM missions in the 70s and 80s, the Ulysses mission reconnaissance far above the ecliptic and the launch of Yohkoh’s and SOHO’s imagers in the 90s, and the long-term ‘monitoring’ of both the Sun and the conditions upstream of the Earth on SOHO, WIND and ACE, the STEREO mission opened a floodgate to research focused on solar activity and its heliospheric and terrestrial consequences. Physics-based, often semi-empirical 3D models increasingly came into widespread use for reconstructing and interpreting the multiple imaging perspectives and multipoint in-situ measurements that the twin STEREO spacecraft, combined with Earth-viewpoint assets (including the GONG ground-based network, and as of 2010, SDO magnetographs), provided on a regular basis. These observations and models together transformed perceptions of phenomena ranging from coronal structure to solar wind sources to eruptive phenomena and consequences, and the tools used to study and forecast them. Now Parker Solar Probe and Solar Orbiter are probing details of the still unexplored regions closer to the Sun than Mercury’s orbit, with the goal of completing that part of the solar/solar wind connection puzzle. And the overall science results from these observations and analysis efforts have not been confined to heliophysics, having especially influenced planetary science and astrophysics. They are seen in recreations of long-past scenarios when our Sun and solar system were evolving, in investigations of solar activity impacts including auroral emissions at the planets,  and in applications to distant planetary systems around other ‘Suns’. That these lofty implications are related to the bit flips and static ‘noise’ first identified with ‘space weather’, provides one of the interesting connections, and still ongoing journeys/stories, within EGU’s research universe.</p>

Author(s):  
Joanna D. Haigh ◽  
Peter Cargill

This chapter focuses on the link between Sun and Earth generically known as space weather. This link is referred to as the occurrence in the solar corona of energetic phenomenon such as flares and coronal mass ejections which can have a major impact on the Earth's space environment. There were other discoveries in subsequent years, but the 1950s and 1960s brought major advances in the understanding of the connection between the Sun and the Earth. Satellite observations confirmed the existence of the solar wind, so that the nature of the interplanetary medium was identified and measured. Such continuous monitoring of the Sun and solar wind has, in turn, led to methods for predicting deleterious space weather.


2017 ◽  
Vol 98 (12) ◽  
pp. 2593-2602 ◽  
Author(s):  
Keith Strong ◽  
Nicholeen Viall ◽  
Joan Schmelz ◽  
Julia Saba

Abstract The Sun exports a continuous outflow of plasma into interplanetary space: the solar wind. The solar wind primarily comprises two components: high- and slow-speed flows. These move with velocities ranging from 200 to 800 km s-1 depending on the source of the particular flow. As well as its speed, the density, temperature, and even the composition of the solar wind change. Adding to its intrinsic variability, there are embedded transients resulting from flares and coronal mass ejections that further complicate its dynamics and space weather impacts. The solar wind interacts differently with each of the solar system objects it encounters based on their magnetic and atmospheric properties. Even more complex processes occur as the solar wind encounters the interstellar medium, at the outer boundaries of the Sun’s domain. The solar wind stretches to beyond 100 au (where 1 au ≡ 149 597 870 700 m) from the Sun, which means that Earth is essentially immersed in the very hot solar atmosphere, and that leads to many space weather impacts on life and society. The specific space weather impacts on Earth will be discussed in detail in the next two papers in this series.


2017 ◽  
Vol 2 (1) ◽  
pp. 46-57
Author(s):  
Ashish Mishra ◽  
Mukul Kumar

The present article gives a brief overview of space weather and its drivers. The space weather is of immense importance for the spaceborne and ground-based technological systems. The satellites, the power grids, telecommunication and in severe conditions the human lives are at risk. The article covers the effects of solar transient activities (e.g. Solar flares, Coronal mass ejections and Solar winds etc.) and their consequences on the Earth’s atmosphere. The space weather is the change in the conditions of interplanetary space because of the solar transient activities. We also discussed the importance of the solar wind which is a continuous flow of the charged energy particles from the Sun to the Earth in respect of the space weather. This article also put light on the Sun-Earth connection and effects of the space weather on it. The Earth’s magnetosphere, formed by the interaction of solar wind and Earth’s magnetic field behaves like a shield for the Earth against the solar wind.


2001 ◽  
Vol 203 ◽  
pp. 533-540
Author(s):  
A. B. Galvin

Recent in-situ measurements of the composition of the solar wind and heliospheric particles from SOHO, ACE, Wind and Ulysses are providing valuable and often unique new information on origins and acceleration processes in the Sun and heliosphere. This paper reviews some of the more interesting recent findings and their implications.


2021 ◽  
Author(s):  
Pietro Zucca

<p>Understanding and modelling the complex state of the Sun-solar wind-heliosphere system, requires a comprehensive set of multiwavelength observations. LOFAR has unique capabilities in the radio domain. Some examples of these include: a) the ability to take high-resolution solar dynamic spectra and radio images of the Sun; b) observing the scintillation (interplanetary scintillation - IPS) of distant, compact, astronomical radio sources to determine the density, velocity and turbulence structure of the solar wind; and c) the use of Faraday rotation as a tool to probe the interplanetary magnetic-field strength and direction. However, to better understand and predict how the Sun, its atmosphere, and more in general the Heliosphere works and impacts Earth, the combination of in-situ spacecraft measurements and ground-based remote-sensing observations of coronal and heliospheric plasma parameters is extremely useful. Ground-based observations can be used to infer a global picture of the inner heliosphere, providing the essential context into which in-situ measurements from spacecraft can be placed. Conversely, remote-sensing observations usually contain information from extended lines of sight, with some deconvolution and modelling necessary to build up a three-dimensional (3-D) picture. Precise spacecraft measurements, when calibrated, can provide ground truth to constrain these models. The PSP mission is observing the solar corona and near-Sun interplanetary space. It has a highly-elliptical orbit taking the spacecraft as close as nearly 36 sola radii from the Sun centre on its first perihelion passage, and subsequent passages ultimately reaching as close as 9.8 solar radii. Four instruments are on the spacecraft’s payload: FIELDS measuring the radio emission, electric and magnetic fields, Poynting flux, and plasma waves as well as the electron density and temperature; ISOIS measuring energetic electrons, protons, and heavy ions in the energy range 10 keV-100 MeV; SWEAP measuring the density, temperature, and flow speed of electrons, protons, and alphas in the solar wind; and finally, WISPR imaging coronal streamers, coronal mass ejections (CMEs), their associated shocks, and other solar wind structures in the corona and near-Sun interplanetary space, and provide context for the other three in-situ instruments. In this talk, the different observing modes of LOFAR and several results of the joint LOFAR/PSP campaign will be presented, including fine structures of radio bursts, localization and kinematics of propagating radio sources in the heliosphere, and the challenges and plans for future observing campaigns including PSP and Solar Orbiter.</p><p> </p>


2013 ◽  
Vol 8 (S300) ◽  
pp. 456-457
Author(s):  
Teodor Pintér ◽  
Milan Rybanský ◽  
Ivan Dorotovič

AbstractThe global magnetic field of the Sun is the determining parameter of spreading the solar wind in the interplanetary space. The global field changes the polarity synchronically with the cycle of solar activity. The interesting indicator of the polarity change are the occurence so-called polar belts of the prominences. The article shows the performance of these belts on observational work from 1975 to 2009. A coordinated effort is suggested for the compilation of data from different observers following the method described by Rušin et al., 1988.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Manuela Temmer

AbstractThe Sun, as an active star, is the driver of energetic phenomena that structure interplanetary space and affect planetary atmospheres. The effects of Space Weather on Earth and the solar system is of increasing importance as human spaceflight is preparing for lunar and Mars missions. This review is focusing on the solar perspective of the Space Weather relevant phenomena, coronal mass ejections (CMEs), flares, solar energetic particles (SEPs), and solar wind stream interaction regions (SIR). With the advent of the STEREO mission (launched in 2006), literally, new perspectives were provided that enabled for the first time to study coronal structures and the evolution of activity phenomena in three dimensions. New imaging capabilities, covering the entire Sun-Earth distance range, allowed to seamlessly connect CMEs and their interplanetary counterparts measured in-situ (so called ICMEs). This vastly increased our knowledge and understanding of the dynamics of interplanetary space due to solar activity and fostered the development of Space Weather forecasting models. Moreover, we are facing challenging times gathering new data from two extraordinary missions, NASA’s Parker Solar Probe (launched in 2018) and ESA’s Solar Orbiter (launched in 2020), that will in the near future provide more detailed insight into the solar wind evolution and image CMEs from view points never approached before. The current review builds upon the Living Reviews article by Schwenn from 2006, updating on the Space Weather relevant CME-flare-SEP phenomena from the solar perspective, as observed from multiple viewpoints and their concomitant solar surface signatures.


2018 ◽  
Vol 868 (2) ◽  
pp. 137 ◽  
Author(s):  
Ming Xiong ◽  
Jackie A. Davies ◽  
Xueshang Feng ◽  
Bo Li ◽  
Liping Yang ◽  
...  

2009 ◽  
Vol 5 (S264) ◽  
pp. 356-358 ◽  
Author(s):  
P. K. Manoharan

AbstractIn this paper, I present the results on large-scale evolution of density turbulence of solar wind in the inner heliosphere during 1985–2009. At a given distance from the Sun, the density turbulence is maximum around the maximum phase of the solar cycle and it reduces to ~70%, near the minimum phase. However, in the current minimum of solar activity, the level of turbulence has gradually decreased, starting from the year 2005, to the present level of ~30%. These results suggest that the source of solar wind changes globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has significantly reduced in the present low level of activity.


Sign in / Sign up

Export Citation Format

Share Document