scholarly journals An Insight into Space Weather

2017 ◽  
Vol 2 (1) ◽  
pp. 46-57
Author(s):  
Ashish Mishra ◽  
Mukul Kumar

The present article gives a brief overview of space weather and its drivers. The space weather is of immense importance for the spaceborne and ground-based technological systems. The satellites, the power grids, telecommunication and in severe conditions the human lives are at risk. The article covers the effects of solar transient activities (e.g. Solar flares, Coronal mass ejections and Solar winds etc.) and their consequences on the Earth’s atmosphere. The space weather is the change in the conditions of interplanetary space because of the solar transient activities. We also discussed the importance of the solar wind which is a continuous flow of the charged energy particles from the Sun to the Earth in respect of the space weather. This article also put light on the Sun-Earth connection and effects of the space weather on it. The Earth’s magnetosphere, formed by the interaction of solar wind and Earth’s magnetic field behaves like a shield for the Earth against the solar wind.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


2021 ◽  
Author(s):  
Jacobo Varela Rodriguez ◽  
Sacha A. Brun ◽  
Antoine Strugarek ◽  
Victor Réville ◽  
Filippo Pantellini ◽  
...  

<p><span>The aim of the study is to analyze the response of the Earth magnetosphere for various space weather conditions and model the effect of interplanetary coronal mass ejections. The magnetopause stand off distance, open-closed field lines boundary and plasma flows towards the planet surface are investigated. We use the MHD code PLUTO in spherical coordinates to perform a parametric study regarding the dynamic pressure and temperature of the solar wind as well as the interplanetary magnetic field intensity and orientation. The range of the parameters analyzed extends from regular to extreme space weather conditions consistent with coronal mass ejections at the Earth orbit. The direct precipitation of the solar wind on the Earth day side at equatorial latitudes is extremely unlikely even during super coronal mass ejections. For example, the SW precipitation towards the Earth surface for a IMF purely oriented in the Southward direction requires a IMF intensity around 1000 nT and the SW dynamic pressure above 350 nPa, space weather conditions well above super-ICMEs. The analysis is extended to previous stages of the solar evolution considering the rotation tracks from Carolan (2019). The simulations performed indicate an efficient shielding of the Earth surface 1100 Myr after the Sun enters in the main sequence. On the other hand, for early evolution phases along the Sun main sequence once the Sun rotation rate was at least 5 times faster (< 440 Myr), the Earth surface was directly exposed to the solar wind during coronal mass ejections (assuming today´s Earth magnetic field). Regarding the satellites orbiting the Earth, Southward and Ecliptic IMF orientations are particularly adverse for Geosynchronous satellites, partially exposed to the SW if the SW dynamic pressure is 8-14 nPa and the IMF intensity 10 nT. On the other hand, Medium orbit satellites at 20000 km are directly exposed to the SW during Common ICME if the IMF orientation is Southward and during Strong ICME if the IMF orientation is Earth-Sun or Ecliptic. The same way, Medium orbit satellites at 10000 km are directly exposed to the SW if a Super ICME with Southward IMF orientation impacts the Earth.</span></p><p>This work was supported by the project 2019-T1/AMB-13648 founded by the Comunidad de Madrid, grants ERC WholeSun, Exoplanets A and PNP. We extend our thanks to CNES for Solar Orbiter, PLATO and Meteo Space science support and to INSU/PNST for their financial support.</p>


2012 ◽  
Vol 8 (S294) ◽  
pp. 487-488
Author(s):  
Li-Jia Liu ◽  
Bo Peng

AbstractThe Sun affects the Earth in multiple ways. In particular, the material in interplanetary space comes from coronal expansion in the form of solar wind, which is the primary source of the interplanetary medium. Ground-based Interplanetary Scintillation (IPS) observations are an important and effective method for measuring solar wind speed and the structures of small diameter radio sources. In this paper we will discuss the IPS observations in China.


Author(s):  
Joanna D. Haigh ◽  
Peter Cargill

This chapter focuses on the link between Sun and Earth generically known as space weather. This link is referred to as the occurrence in the solar corona of energetic phenomenon such as flares and coronal mass ejections which can have a major impact on the Earth's space environment. There were other discoveries in subsequent years, but the 1950s and 1960s brought major advances in the understanding of the connection between the Sun and the Earth. Satellite observations confirmed the existence of the solar wind, so that the nature of the interplanetary medium was identified and measured. Such continuous monitoring of the Sun and solar wind has, in turn, led to methods for predicting deleterious space weather.


2021 ◽  
Author(s):  
Peter Gallagher ◽  
Sophie Murray ◽  
John Malone-Leigh ◽  
Joan Campanyà ◽  
Alberto Cañizares ◽  
...  

<p>Forecasting solar flares based on while-light images and photospheric magnetograms of sunspots is notoriously challenging, while accurate forecasting of coronal mass ejections (CME) is still in its infancy. That said, the chances of a CME being launched is more likely following a flare. CMEs launched from the western hemisphere and “halo” CMEs are the most likely to be geomagnetically impactful, but forecasting their arrival and impact at Earth depends on how well their velocity is known near the Sun, the solar wind conditions between the Sun and the Earth, the accuracy of theoretical models and on the orientation of the CME magnetic field.  In this presentation, we describe a well observed active region, flare, CME, radio burst and sudden geomagnetic impulse that was observed on December 7-10, 2020 by a slew of instruments (SDO, ACE, DSCOVR, PSP, US and European magnetometers). This was a solar eruption that was not expected, but the CME and resulting geomagnetic impact should have been straight-forward to model and forecast. What can we learn from our failure to forecast this simple event and its impacts at Earth? </p>


2012 ◽  
Vol 93 (9) ◽  
pp. 1327-1335 ◽  
Author(s):  
Keith Strong ◽  
Julia Saba ◽  
Therese Kucera

The American Meteorological Society has recently adopted space weather as a new core competency. This is the first in a series of papers discussing the multidisciplinary aspects of space weather. This paper concerns the physics behind solar variability, the driver of space weather. We follow the tortuous journey of the energy from its production in the solar core until it escapes into interplanetary space, showing how the internal dynamics and structure of the Sun change its nature. We show how the production and dissipation of magnetic fields are a key clue to untangling the riddle of the sunspot cycle and how that, in turn, affects the amount of radiation that the Earth receives from the Sun—the total solar irradiance.


2017 ◽  
Vol 98 (12) ◽  
pp. 2593-2602 ◽  
Author(s):  
Keith Strong ◽  
Nicholeen Viall ◽  
Joan Schmelz ◽  
Julia Saba

Abstract The Sun exports a continuous outflow of plasma into interplanetary space: the solar wind. The solar wind primarily comprises two components: high- and slow-speed flows. These move with velocities ranging from 200 to 800 km s-1 depending on the source of the particular flow. As well as its speed, the density, temperature, and even the composition of the solar wind change. Adding to its intrinsic variability, there are embedded transients resulting from flares and coronal mass ejections that further complicate its dynamics and space weather impacts. The solar wind interacts differently with each of the solar system objects it encounters based on their magnetic and atmospheric properties. Even more complex processes occur as the solar wind encounters the interstellar medium, at the outer boundaries of the Sun’s domain. The solar wind stretches to beyond 100 au (where 1 au ≡ 149 597 870 700 m) from the Sun, which means that Earth is essentially immersed in the very hot solar atmosphere, and that leads to many space weather impacts on life and society. The specific space weather impacts on Earth will be discussed in detail in the next two papers in this series.


2019 ◽  
Vol 6 (1) ◽  
pp. 1-13
Author(s):  
Ashish Mishra ◽  
Mukul Kumar

The present article is the successor of Solar Dynamical Processes I. The previous article was focused on the Sun, its magnetic field with an emphasis on various dynamical processes occurring on the Sun, e.g. sunspots, prominence and bright points which in turn plays a fundamental role in regulating the space weather. This article is emphasized on the solar dynamical processes and develop an extensive understanding of the various phenomena involved in their origin. The article also covers various models and hypothesis put forward by pioneer scientists on the basis of their observation by space-borne and ground-based instruments. This article shade light over a wide range of dynamical processes e.g., solar flares, coronal mass ejections, solar jets and coronal holes. Solar jets, the small-scale transient activities are found to have association with the other transient activities (e.g., mini-flares and mini-filaments). Flares as well as the coronal mass ejections are responsible for releasing a large amount of high energy charged particles and magnetic flux into the interplanetary space, and are being considered as the main drivers of space weather.


2021 ◽  
Author(s):  
Janet G Luhmann

<p>While the term ‘space weather’ remains to some synonymous with operational anomalies on spacecraft, communications interruptions, and other practical matters, its broader implications extend across the EGU and beyond. Much of the science underlying space weather has to do with how our star, the Sun, affects the space environment at Earth’s orbit. We are lucky to be living at a time where information from both remote sensing (especially imaging at visible, x-ray and EUV wavelengths) and in-situ measurements (of plasmas, magnetic fields, and energetic particles) have provided unprecedented pictures of the Sun and knowledge of its extended atmosphere, the solar wind. Building on early forays into interplanetary space and deployments of coronagraphs with the Helios and SMM missions in the 70s and 80s, the Ulysses mission reconnaissance far above the ecliptic and the launch of Yohkoh’s and SOHO’s imagers in the 90s, and the long-term ‘monitoring’ of both the Sun and the conditions upstream of the Earth on SOHO, WIND and ACE, the STEREO mission opened a floodgate to research focused on solar activity and its heliospheric and terrestrial consequences. Physics-based, often semi-empirical 3D models increasingly came into widespread use for reconstructing and interpreting the multiple imaging perspectives and multipoint in-situ measurements that the twin STEREO spacecraft, combined with Earth-viewpoint assets (including the GONG ground-based network, and as of 2010, SDO magnetographs), provided on a regular basis. These observations and models together transformed perceptions of phenomena ranging from coronal structure to solar wind sources to eruptive phenomena and consequences, and the tools used to study and forecast them. Now Parker Solar Probe and Solar Orbiter are probing details of the still unexplored regions closer to the Sun than Mercury’s orbit, with the goal of completing that part of the solar/solar wind connection puzzle. And the overall science results from these observations and analysis efforts have not been confined to heliophysics, having especially influenced planetary science and astrophysics. They are seen in recreations of long-past scenarios when our Sun and solar system were evolving, in investigations of solar activity impacts including auroral emissions at the planets,  and in applications to distant planetary systems around other ‘Suns’. That these lofty implications are related to the bit flips and static ‘noise’ first identified with ‘space weather’, provides one of the interesting connections, and still ongoing journeys/stories, within EGU’s research universe.</p>


Author(s):  
Hamid Nebdi

Our nearest shining star, the Sun, source of radiations and energy, sometimes generates severe events and phenomena in space which can affect our technology and biosphere. On the other hand, space weather, as defined by National Aeronautics and Space Administration (NASA), is conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and can endanger human life or health. A brief description of the Sun-Earth connection is firstly presented. Secondly, a particular attention is given to highlight the Sun's variability and the link between the space weather and climate change by means of some recent studies.


Sign in / Sign up

Export Citation Format

Share Document