Insights into chemical mobility in titanite driven by low-temperature crystal-plastic deformation

Author(s):  
Nicholas Udy ◽  
Michael Stearns

<p>The U-Pb system in titanite has been shown to be reset during a variety of high-temperature processes including high-temperature deformation, but post-deformation modification and recovery of crystal-lattice strain have so far made U-Pb equilibration mechanism from deformed titanites equivocal. Microstructures, including mechanical twinning and subgrain rotation recrystallization are more likely to be preserved at low-temperatures, but the systematics of chemical equilibration have not been established for these conditions. This study identifies progressive crystallographic misorientation and deformation twins in titanite porphyroclasts from the Wasatch Fault Zone, Utah, USA. The microstructures, mapped using electron backscatter diffraction (EBSD), developed at ~11 km depth during 300–400 ºC crystal-plastic deformation within the ductile fault zone. These microstructural maps were used to guide laser ablation-split stream ICP-MS analysis: U-Pb isotopes measured in tandem with major and trace element contents. Despite the low temperature, U-Pb and trace element contents in titanite equilibrated, at least partially, during deformation. Both major and trace elements in titanite also likely partitioned with a fluid and in response to the (re)crystallization of other mineral phases in the fault zone. Chemical zoning and crystal lattice recovery suggestive of fluid-aided recrystallization are absent, and the main mechanism for this resetting may instead be an enhancement of element mobility along microstructure dislocations. These processes are interpreted to record complex open-system behavior of titanite caused by crystal-plastic deformation during the initiation of the WFZ. This presentation will summarize the comparative analysis of microstructure by EBSD and titanite chemistry by LASS-ICP-MS, and how it bears on the understanding of elemental mobility in titanite during low-temperature crystal-plastic deformation.</p>

2014 ◽  
Vol 29 (6) ◽  
pp. 1034-1041 ◽  
Author(s):  
Moritz Albrecht ◽  
Insa Theresa Derrey ◽  
Ingo Horn ◽  
Stephan Schuth ◽  
Stefan Weyer

2021 ◽  
Vol 8 ◽  
Author(s):  
Tong Pan ◽  
Qing-Feng Ding ◽  
Xuan Zhou ◽  
Shan-Ping Li ◽  
Jie Han ◽  
...  

The Chaqiabeishan area is characterized by small Li-rich granitic pegmatites in the Quanji Massif (QM), northwest China. In this study, the columbite-tantalite group minerals (CGMs) from a typical Li-rich pegmatite dike were analyzed for major element contents using an EMPA (electron microprobe analyzer), for trace element contents using LA-ICP-MS (laser ablation-inductively coupled plasma mass spectrometry), and for ages using LA-ICP-MS U-Pb dating, respectively. The CGMs from the sample can be divided into two types, i.e., magmatic Type 1 and metasomatic Type 2. Although these two types of CGMs do not exhibit distinct major and trace element variations from core to rim within an individual grain, the Ta# values, Mn# values, and some trace element contents (such as Zr, Hf, W, and Sr) of Type 1 CGMs are distinct from those of Type 2 CGMs. The overall compositional changes from Type 1 CGMs to Type 2 CGMs are consistent with the typical evolutionary trend described for many lithium-cesium-tantalum (LCT) pegmatites and the complex spodumene trend described by Černý and Ercit (Bull. Mineral., 1989, 108, 499–532). The Type 2 CGMs have formed later and must be a metasomatic product of Type 1 CGMs. Eighteen Type 1 CGMs yielded a weighted mean 206Pb/238U age of 240.6 ± 1.5 Ma. The slight oscillatory zoning and/or sector zoning suggest that the dated Type 1 columbites have a magmatic origin. Thus, the crystallization ages of Type 1 columbites represent the emplacement ages of Li-rich pegmatites. One of the Type 2 CGMs yielded a 206Pb/238U age of 211.0 ± 4.7 Ma, which is hardly interpreted to be an age representing the later hydrothermal metasomatism, because one dataset has no apparent statistical significance. Therefore, our dating results can only indicate that the Li-rich pegmatite-forming melts were emplaced at approximately 240.6 Ma. Based on these results and previous studies of the 240–254 Ma granitoids in the QM, we conclude that the 240.6 Ma Li-rich granitic pegmatites, as well as 240–254 Ma granitoids in the QM, were both emplaced during the southward subduction of the Zongwulong Ocean Plate in the Late Permian to Middle Triassic.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-13

Background: Thyroid cancer is an internationally important health problem. The aim of this exploratory study was to evaluate whether significant changes in the thyroid tissue levels of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn exist in the malignantly transformed thyroid. Methods: Thyroid tissue levels of ten trace elements were prospectively evaluated in 41 patients with thyroid malignant tumors and 105 healthy inhabitants. Measurements were performed using non-destructive instrumental neutron activation analysis with high resolution spectrometry of long-lived radionuclides. Tissue samples were divided into two portions. One was used for morphological study while the other was intended for trace element analysis. Results: It was found that contents of Ag, Co, Cr, Hg, and Rb were significantly higher (approximately 12.8, 1.4, 1.6, 19.6, and 1.7 times, respectively) in cancerous tissues than in normal tissues. Conclusions: There are considerable changes in trace element contents in the malignantly transformed tissue of thyroid.


Urolithiasis ◽  
1989 ◽  
pp. 229-231
Author(s):  
J. Hofbauer ◽  
I. Steffan ◽  
H. Schwetz ◽  
G. Vujicic ◽  
O. Zechner

Sign in / Sign up

Export Citation Format

Share Document