Distribution assessment of climate-induced changes of primary production in the Barents Sea ecosystem

Author(s):  
Sergey Berdnikov ◽  
Vera Sorokina ◽  
Valerii Kulygin

<p>Changes in the Arctic environment in recent decades may result in favourable conditions for the increase of biological production. However, there are not many well-documented climate-related shifts in plankton, fish and benthic communities in the Arctic Ocean marine ecosystems, and there is significant uncertainty about the present and future productivity values. Researchers often estimate (using forecasts, etc.) how some key stocks may respond to future climatic changes to assess the prospects of fisheries.<br>In our study, applying the Ecopath multi-species balance production model, we estimated the distribution of climate-induced primary productivity increase, along the food web in the Barents Sea ecosystem. Assessment was made for two periods (“cold” (1970-1990) and “warm” (1991-2016)) and three regions - the Southern Barents Sea and the adjacent areas of the Norwegian Sea, the Svalbard Archipelago region, and the Northern Barents Sea. For each identified area, the food web has differences in both the structure and quantitative indices (for example, in abundance and biomass) of different trophic groups in different periods, in particular, during the increased ice coverage and relative warming.<br>We propose a new approach to assess food rations for the Ecopath model. It allows to consider more flexibly the change in the ecosystem food structure, associated with changes in biomasses (stocks) and the appearance of new species in the studied area due to environmental fluctuations related to marine climate warming. Based on the simulation results, we made conclusions concerning the observed and probable changes, related to the primary productivity increase, in the considered ecosystems of the three identified Barents Sea regions.<br>An integral indicator of the mean trophic level reflects climate-induced changes in the Barents Sea ecosystem. It remained almost unchanged in the southern region but increased for the Northern region and the Svalbard region. This is due to the fact that new species appeared in the structure of food webs of these regions and/or the existed species' biomass (stocks) changed during the warm period when compared to the cold one.<br>А generalized indicator of biological diversity is an additional evidence of climate-induced changes in the primary production. During the warm period, the Shannon Biodiversity Index for the Northern and the Svalbard regions increases, while it decreases in the Southern region mainly because the biomass of the main trophic groups (cod, herring) increases.<br>The commercial fishing increase in the Northern and the Svalbard Archipelago regions is likely to be expected. However, there is a possibility that there will be increased stratification between the upper cold and less salty water masses formed by melt ice and the Atlantic water below, which becomes cooler and denser. This can lead to the decrease in the nutrients content of the productive zone and prevent the positive effects of the warm water inflow.</p>

Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 40
Author(s):  
Evgeny Genelt-Yanovskiy ◽  
Yixuan Li ◽  
Ekaterina Stratanenko ◽  
Natalia Zhuravleva ◽  
Natalia Strelkova ◽  
...  

Ophiura sarsii is a common brittle star species across the Arctic and Sub-Arctic regions of the Atlantic and the Pacific oceans. Ophiurasarsii is among the dominant echinoderms in the Barents Sea. We studied the genetic diversity of O.sarsii by sequencing the 548 bp fragment of the mitochondrial COI gene. Ophiurasarsii demonstrated high genetic diversity in the Barents Sea. Both major Atlantic mtDNA lineages were present in the Barents Sea and were evenly distributed between the northern waters around Svalbard archipelago and the southern part near Murmansk coast of Kola Peninsula. Both regions, and other parts of the O.sarsii range, were characterized by high haplotype diversity with a significant number of private haplotypes being mostly satellites to the two dominant haplotypes, each belonging to a different mtDNA clade. Demographic analyses indicated that the demographic and spatial expansion of O.sarsii in the Barents Sea most plausibly has started in the Bølling–Allerød interstadial during the deglaciation of the western margin of the Barents Sea.


2015 ◽  
Vol 35 ◽  
pp. 9 ◽  
Author(s):  
Andrey Sikorski ◽  
Lyudmila Pavlova

<p>The species <em>Scolelepis finmarchicus</em> sp. nov. is described from the Norwegian and Barents Seas along the northern Norwegian coast and Kola peninsula. The occurrence of this species in the Kola Bay could be seen as a sign of climate warming in the area. Taxonomic issues existing in the genus <em>Scolelepis</em> within the area along the Norwegian coast and in the Barents Sea are briefly touched upon. Seven species belonging to <em>Scolelepis</em> have recently been recorded from the Atlantic sector of the Arctic. <em>Scolelepis</em> (<em>S</em>.) <em>matsugae</em> Sikorski, 1994 is newly synonymized with <em>S</em>. (<em>S</em>.) <em>laonicola</em> (Tzetlin, 1985). This article provides a brief review of <em>Scolelepis</em> together with an identification key for the genus from the Atlantic sector of the Arctic</p>


Author(s):  
Rasmus Benestad

The Barents Sea is a region of the Arctic Ocean named after one of its first known explorers (1594–1597), Willem Barentsz from the Netherlands, although there are accounts of earlier explorations: the Norwegian seafarer Ottar rounded the northern tip of Europe and explored the Barents and White Seas between 870 and 890 ce, a journey followed by a number of Norsemen; Pomors hunted seals and walruses in the region; and Novgorodian merchants engaged in the fur trade. These seafarers were probably the first to accumulate knowledge about the nature of sea ice in the Barents region; however, scientific expeditions and the exploration of the climate of the region had to wait until the invention and employment of scientific instruments such as the thermometer and barometer. Most of the early exploration involved mapping the land and the sea ice and making geographical observations. There were also many unsuccessful attempts to use the Northeast Passage to reach the Bering Strait. The first scientific expeditions involved F. P. Litke (1821±1824), P. K. Pakhtusov (1834±1835), A. K. Tsivol’ka (1837±1839), and Henrik Mohn (1876–1878), who recorded oceanographic, ice, and meteorological conditions.The scientific study of the Barents region and its climate has been spearheaded by a number of campaigns. There were four generations of the International Polar Year (IPY): 1882–1883, 1932–1933, 1957–1958, and 2007–2008. A British polar campaign was launched in July 1945 with Antarctic operations administered by the Colonial Office, renamed as the Falkland Islands Dependencies Survey (FIDS); it included a scientific bureau by 1950. It was rebranded as the British Antarctic Survey (BAS) in 1962 (British Antarctic Survey History leaflet). While BAS had its initial emphasis on the Antarctic, it has also been involved in science projects in the Barents region. The most dedicated mission to the Arctic and the Barents region has been the Arctic Monitoring and Assessment Programme (AMAP), which has commissioned a series of reports on the Arctic climate: the Arctic Climate Impact Assessment (ACIA) report, the Snow Water Ice and Permafrost in the Arctic (SWIPA) report, and the Adaptive Actions in a Changing Arctic (AACA) report.The climate of the Barents Sea is strongly influenced by the warm waters from the Norwegian current bringing heat from the subtropical North Atlantic. The region is 10°C–15°C warmer than the average temperature on the same latitude, and a large part of the Barents Sea is open water even in winter. It is roughly bounded by the Svalbard archipelago, northern Fennoscandia, the Kanin Peninsula, Kolguyev Island, Novaya Zemlya, and Franz Josef Land, and is a shallow ocean basin which constrains physical processes such as currents and convection. To the west, the Greenland Sea forms a buffer region with some of the strongest temperature gradients on earth between Iceland and Greenland. The combination of a strong temperature gradient and westerlies influences air pressure, wind patterns, and storm tracks. The strong temperature contrast between sea ice and open water in the northern part sets the stage for polar lows, as well as heat and moisture exchange between ocean and atmosphere. Glaciers on the Arctic islands generate icebergs, which may drift in the Barents Sea subject to wind and ocean currents.The land encircling the Barents Sea includes regions with permafrost and tundra. Precipitation comes mainly from synoptic storms and weather fronts; it falls as snow in the winter and rain in the summer. The land area is snow-covered in winter, and rivers in the region drain the rainwater and meltwater into the Barents Sea. Pronounced natural variations in the seasonal weather statistics can be linked to variations in the polar jet stream and Rossby waves, which result in a clustering of storm activity, blocking high-pressure systems. The Barents region is subject to rapid climate change due to a “polar amplification,” and observations from Svalbard suggest that the past warming trend ranks among the strongest recorded on earth. The regional change is reinforced by a number of feedback effects, such as receding sea-ice cover and influx of mild moist air from the south.


2010 ◽  
Vol 90 (5) ◽  
pp. 1041-1050 ◽  
Author(s):  
J. Ramos ◽  
G. San Martín ◽  
A. Sikorski

A collection of over one hundred specimens of Syllidae (Polychaeta) from the Arctic and sub-Arctic regions has been examined and identified. The specimens were obtained from 26 stations in the Barents Sea, some Norwegian fiords and localities of the northern North Sea. A total of 21 species were identified; three species (Myrianida langerhansi (Gidholm, 1967), Syllides longocirrata Örsted, 1845 and Sphaerosyllis taylori Perkins, 1981) are new reports for the Arctic Ocean; 2 species are new to science, Streptodonta exsulis sp. nov. and Trypanosyllis troll sp. nov. Streptodonta exsulis sp. nov. have 4 thick, distally strongly knobbed aciculae on each anterior parapodia, shifting to a single, slender acicula on posterior parapodia; falcigers and pseudospinigers distally bidentate; and pharyngeal tooth located centrally and relatively close to anterior rim of pharynx. Trypanosyllis troll sp. nov. have 2, occasionally 3 straight aciculae in parapodia protruding out from parapodial lobes; falcigers bidentate; and body surface densely covered by numerous, small papillae. Based on the description of these 2 new species, some modifications are proposed in the diagnoses of the genera Streptodonta San Martín & Hutchings, 2006 and Trypanosyllis Claparède, 1864.


2021 ◽  
Author(s):  
Hannah Zanowski ◽  
Alexandra Jahn ◽  
Marika Holland

&lt;p&gt;Recently, the Arctic has undergone substantial changes in sea ice cover and the hydrologic cycle, both of which strongly impact the freshwater storage in, and export from, the Arctic Ocean. Here we analyze Arctic freshwater storage and fluxes in 7 climate models from the Coupled Model Intercomparison Project phase 6 (CMIP6) and assess their agreement over the historical period (1980-2000) and in two future emissions scenarios, SSP1-2.6 and SSP5-8.5. In the historical simulation, few models agree closely with observations over 1980-2000. In both future scenarios the models show an increase in liquid (ocean) freshwater storage in conjunction with a reduction in solid storage and fluxes through the major Arctic gateways (Bering Strait, Fram Strait, Davis Strait, and the Barents Sea Opening) that is typically larger for SSP5-8.5 than SSP1-2.6. The liquid fluxes through the gateways exhibit a more complex pattern, with models exhibiting a change in sign of the freshwater flux through the Barents Sea Opening and little change in the flux through the Bering Strait in addition to increased export from the remaining straits by the end of the 21st century. A decomposition of the liquid fluxes into their salinity and volume contributions shows that the Barents Sea flux changes are driven by salinity changes, while the Bering Strait flux changes are driven by compensating salinity and volume changes. In the straits west of Greenland (Nares, Barrow, and Davis straits), the models disagree on whether there will be a decrease, increase, or steady liquid freshwater export in the early to mid 21st century, although they mostly show increased liquid freshwater export in the late 21st century. The underlying cause of this is a difference in the magnitude and timing of a simulated decrease in the volume flux through these straits. Although the models broadly agree on the sign of late 21st century storage and flux changes, substantial differences exist between the magnitude of these changes and the models&amp;#8217; Arctic mean states, which shows no fundamental improvement in the models compared to CMIP5.&lt;/p&gt;


Author(s):  
Bérengère Husson ◽  
Gregoire Certain ◽  
Anatoly Filin ◽  
Benjamin Planque

AbstractMany marine species are shifting their distribution poleward in response to climate change. The Barents Sea, as a doorstep to the fast-warming Arctic, is experiencing large scale changes in its environment and its communities. This paper aims at understanding what environmental predictors limit fish species habitats in the Barents Sea and discuss their possible evolution in response to the warming of the Arctic.Species distribution models usually aim at predicting the probability of presence or the average abundance of a species, conditional on environmental drivers. A complementary approach is to determine suitable habitats by modelling the upper limit of a species’ response to environmental factors. Using quantile regressions, we model the upper limit of biomass for 33 fish species in the Barents Sea in response to 10 environmental predictors. Boreal species are mainly limited by temperatures and most of them are expected to be able to expand their distribution in the Barents Sea when new thermally suitable habitats become available, in the limit of bathymetric constraints. Artic species are often limited by several predictors, mainly depth, bottom and surface temperature and ice cover, and future habitats are hard to predict qualitatively. Widespread species like the Atlantic cod are not strongly limited by the selected variables at the scale of the study, and current and future suitable habitats are harder to predict. These models can be used as input to integrative tools like end-to-end models on the habitat preference and tolerance at the species scale to inform resource management and conservation.


Author(s):  
I. G. Mindel ◽  
B. A. Trifonov ◽  
M. D. Kaurkin ◽  
V. V. Nesynov

In recent years, in connection with the national task of developing the Arctic territories of Russia and the perspective increase in the hydrocarbon mining on the Arctic shelf, more attention is being paid to the study of seismicity in the Barents Sea shelf. The development of the Russian Arctic shelf with the prospect of increasing hydrocarbon mining is a strategically important issue. Research by B.A. Assinovskaya (1990, 1994) and Ya.V. Konechnaya (2015) allowed the authors to estimate the seismic effects for the northern part of the Barents Sea shelf (Novaya Zemlya region). The paper presents the assessment results of the initial seismic impacts that can be used to solve seismic microzoning problems in the areas of oil and gas infrastructure during the economic development of the Arctic territory.


2021 ◽  
Vol 12 (3-2021) ◽  
pp. 45-53
Author(s):  
M.P. Venger ◽  

In the autumn period 2011, 2015 in the waters of the Barents Sea, the communities of viruses and bacteria were studied, their quantitative composition was determined, and the nature of their distribution was studied. It was shown that the distribution of both virio- and bacterioplankton had pronounced zoning presumably due to increased concentrations of organic matter in more productive coastal and Atlantic waters compared to the Arctic. In September 2011, the number of viruses varied from 0.6 to 46.7 million particles/ml, exceeding the abundance of bacteria by 5 times an average. The quantity of bacterioplankton varied within 0.3–2.9 million cells/ml, biomass – 4.1–35.1 mg C/m3, with a range of mean cell volumes of 0.030–0.115 μm3. In November–December 2015, the abundance of viruses was 0.3–6.4 million particles/ml and quantitatively exceeded their bacterial hosts by 18 times an average. The quantity and biomass of bacteria varied within 0.02–0.3 million cells/ml and 0.3–2.7 mg C/m3, with a range of mean cell volumes of 0.013–0.068 μm3. It was found that the level of development of virio- and bacterioplankton significantly decreased by the late autumn period.


Sign in / Sign up

Export Citation Format

Share Document