Biogeochemical zonation reveals three zones of nitrogen turnover in the Ems estuary

Author(s):  
Gesa Schulz ◽  
Tina Sanders ◽  
Kirstin Dähnke

<p>Estuaries are nutrient filters for coastal waters and can act as nitrate sink or source depending on predominant microbial processes, environmental conditions and geomorphological characteristics. Such environmental factors can change along the estuary itself. This study aims to identify different zones of nitrogen turnover in the Ems estuary and to determine the main processes.</p><p>Water column properties, dissolved inorganic nitrogen and dual stable isotopes of nitrate were measured along the Ems estuary during two research cruises in August 2014 and June 2020. Based on mixing calculations and stable isotope changes, we found that the estuary in both years is clearly divided into three zones that vary in the predominant nitrate turnover pathways. This was confirmed by principle component analysis.</p><p>The zonation mainly corresponded to changes in the geomorphology of the estuary, but a spatial shift of the zones occurred between 2014 and 2020. In both years, the most upstream zone acted as a clear nitrate sink. A strong fractionation (~30 ‰) of nitrate stable isotopes points towards removal by water column denitrification in this hyperturbid estuarine section.  In the middle reach of the estuary, nitrification gained in importance, turning this section into a net nitrate source during both sampling campaigns. In contrast to the biogeochemical active inner zones, mixing dominates nitrate distribution in the outermost section of the estuary.</p><p>Overall, the Ems estuary acted as a nitrate sink in both years. However, the zonation showed that relative stable zones of nitrification and denitrification existed along the estuary, which can change – and possibly move – when biogeochemical properties vary. </p>

2021 ◽  
Author(s):  
Gesa Schulz ◽  
Tina Sanders ◽  
Justus E. E. van Beusekom ◽  
Yoana G. Voynova ◽  
Andreas Schöl ◽  
...  

Abstract. Estuaries are nutrient filters and change riverine nutrient loads before they reach coastal oceans. They have been extensively changed by anthropogenic activities like draining, deepening, and dredging to meet economic and social demand, causing significant regime changes like tidal amplifications and in some cases to hyper-turbid conditions. Furthermore, increased nutrient loads, especially nitrogen, mainly by agriculture cause coastal eutrophication. Estuaries can either act as a sink or as a source of nitrate, depending on environmental and geomorphological conditions. These factors vary along an estuary, and change nitrogen turnover in the system. Here, we investigate the factors controlling nitrogen turnover in the hyper-turbid Ems estuary (Northern Germany) that has been strongly impacted by human activities. During two research cruises in August 2014 and June 2020, we measured water column properties, dissolved inorganic nitrogen, dual stable isotopes of nitrate and dissolved nitrous oxide concentration along the estuary. Overall, the Ems estuary acts as a nitrate sink in both years. However, three distinct biogeochemical zones exist along the estuary. A strong fractionation (~ 26 ‰) of nitrate stable isotopes points towards nitrate removal via water column denitrification in the hyper-turbid Tidal River, driven by anoxic conditions in deeper water layers. In the Middle Reaches of the estuary nitrification gains in importance turning this section into a net nitrate source. The Outer Reaches are dominated by mixing with nitrate uptake in 2020. We find that the overarching control on biogeochemical nitrogen cycling, zonation and nitrous oxide production in the Ems estuary is exerted by suspended particulate matter concentrations and the linked oxygen deficits.


2021 ◽  
Author(s):  
Ahmed Sidi Sadegh ◽  
Zeinebou Sidoumou ◽  
Mamadou Dia ◽  
Juan Luis Gómez Pinchetti ◽  
Noureddine Bouaïcha

Abstract This work was carried out to study the seasonal occurrence of cyanobacteria and their microcystin-LR in water column of Foum-Gleita reservoir (Mauritania). Limnological and biological factors were investigated at three depths (surface, -3, and -6 m) in this reservoir during a full year. Nutrients were analyzed by Spectrophotometry, phytoplankton was analyzed by Inverted Microscopy, microsystins were analyzed by High Performance Liquid Chromatography-tandem Mass Spectrometry and environmental factors relationships were analyzed by Pearson's correlation and Multiple Linear Regression. Physicochemical analyzes have shown that this reservoir is hypereutrophic with dissolved inorganic nitrogen and total phosphorus concentrations relatively high, varying from 1.39 to 6.53 and 0.21 to 0.57 mg/L, respectively. Annual surface water temperature was exceptionally high (27.8 ± 3.6°C), characterizing of a Sahelian climatic conditions. Phytoplankton analyzes have shown dominance of two toxic cyanobacteria species Microcystis aeruginosa and Dolichospermum flos-aquae during warm season (May-September). Microcystins analysis revealed presence of only most toxic variant, microcystin-LR. Microcystin-LR concentration in the surface water samples, during cyanobacterial blooms, was consistently high (5.638 µg/L), exceeding 5-times the World Health Organization drinking water limit (1 µg/L), however, it was much lower (0.83 µg / L) at depth (-6 m). Analysis of environmental factors relationships showed that the most influential factors on abundance of Microcystis aeruginosa and Dolichospermum flos-aquae and variability of microcystin-LR concentrations were total phosphorus, dissolved inorganic nitrogen, iron, temperature and pH. Finally, the study clearly demonstrated need for regular monitoring of cyanobacteria and cyanotoxins in the waters of studied reservoir.


2011 ◽  
Vol 347-353 ◽  
pp. 2302-2307 ◽  
Author(s):  
Hong Xiang Wang ◽  
Yi Shi ◽  
Jian Ma ◽  
Cai Yan Lu ◽  
Xin Chen

A field experiment was conducted to study the characteristics of non-point source nitrogen (N) in the surface runoff from sloping croplands and the influences of rainfall and cropland slope gradient. The results showed that dissolved total N (DTN) was the major form of N in the runoff, and the proportion occupied by dissolved inorganic nitrogen (DIN) ranged from 45% to 85%. The level of NH4+-N was generally higher than the level of NO3--N, and averaged at 2.50 mg·L-1and 1.07 mg·L-1respectively. DIN was positively correlated with DTN (R2=0.962). Dissolved organic N (DON) presented a moderate seasonal change and averaged at 1.40 mg·L-1. Rainfall amount and rainfall intensity significantly affected the components of DTN in the runoff. With the increase of rainfall amount and rainfall intensity, the concentrations of DTN, NH4+-N and NO3--N presented a decreased trend, while the concentration of DON showed an increased trend. N loss went up with an increase in the gradient of sloping cropland, and was less when the duration was longer from the time of N fertilization.fertilization.


2008 ◽  
Vol 43 (11) ◽  
pp. 1223-1233 ◽  
Author(s):  
Bernice R. Rosenzweig ◽  
Hee Sun Moon ◽  
James A. Smith ◽  
Mary Lynn Baeck ◽  
Peter R. Jaffe

2021 ◽  
Vol 171 ◽  
pp. 112655
Author(s):  
G.L. McCloskey ◽  
R. Baheerathan ◽  
C. Dougall ◽  
R. Ellis ◽  
F.R. Bennett ◽  
...  

2001 ◽  
Vol 1 ◽  
pp. 527-533 ◽  
Author(s):  
M. Ozawa ◽  
H. Shibata ◽  
F. Satoh ◽  
K. Sasa

To clarify the effect of vegetation and surface soil removal on dissolved inorganic nitrogen (N) dynamics in a snow-dominated forest soil in northern Japan, the seasonal fluctuation of N concentrations in soil solution and the annual flux of N in soil were investigated at a treated site (in which surface soil, including understory vegetation and organic and A horizons, was removed) and control sites from July 1998 to June 2000. Nitrate (NO3–) concentration in soil solution at the treated site was significantly higher than that of the control in the no-snow period, and it was decreased by dilution from melting snow. The annual net outputs of NO3–from soil at the treated site and control sites were 257 and –12 mmol m–2year–1, and about 57% of the net output at the treated site occurred during the snowmelt period. NO3–was transported from the upper level to the lower level of soil via water movement during late autumn and winter, and it was retained in soil and leached by melt water in early spring. Removing vegetation and surface soil resulted in an increase in NO3–concentration of soil solution, and snowmelt strongly affected the NO3–leaching from treated soil and the NO3–restoration process in a snow-dominated region.


Sign in / Sign up

Export Citation Format

Share Document