Responses of gravel-bed rivers to periodic climate change

Author(s):  
Fergus McNab ◽  
Taylor Schildgen ◽  
Jens Turowski ◽  
Andrew Wickert

<p>Periodic variation in Earth's orbit leads to variation in temperature and precipitation at its surface that are expected to exert a profound influence on landscape evolution. Indeed, cyclical fluctuations in sediment yield and grain size are a ubiquitous feature of the geological record, and recurrence times of geomorphological features such as fluvial terraces and alluvial fans often appear to reflect orbital periodicities. However, making quantitative interpretations of these records requires a detailed understanding of the ways in which sediment is transported from mountainous source regions along alluvial channels to depositional sinks. Sediment transport processes may dampen (i.e. buffer, 'shred') or amplify climate signals, such as changes in channel elevation or sediment flux, and may introduce a lag between them and the responsible external forcing. Recent modelling studies, mostly focused on the potential transmission of climatic signals to sedimentary archives, have predicted a wide range of behaviour and have proven challenging to test in the field. Here, we aim to clarify this discussion and also consider the potential preservation of climatic signals by fluvial terraces along alluvial channels. Our starting point is a recently developed model describing the long-profile evolution of gravel-bed rivers. This model is the first of its kind to be derived from first principles using physical relationships that have been extensively tested in laboratory settings, and takes a non-linear diffusive form. We employ perturbation theory to obtain approximate analytical solutions to the relevant equations that describe how channel elevation and sediment flux vary in response to periodic fluctuations in discharge and sediment supply. Our solutions contain expressions for response amplitudes and lag times as functions of downstream distance, system 'diffusivity' and forcing frequency. Lag times can be a significant fraction of the forcing period, implying that care is required when interpreting the timings of terrace formation in terms of changes in discharge or sediment supply. We also show that at the onset of periodic forcing, or a change in the dominant forcing period, alluvial channels undergo a transient response as they adjust to a new quasi-steady state. Importantly, this result implies that suites of fluvial terraces can be preserved without the need for significant local base-level fall. Since the expressions presented here are defined in terms of fundamental properties of alluvial channels, they should be readily applicable to real settings.</p>

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 690
Author(s):  
Maurizio Tavelli ◽  
Sebastiano Piccolroaz ◽  
Giulia Stradiotti ◽  
Giuseppe Roberto Pisaturo ◽  
Maurizio Righetti

The selective trapping and erosion of fine particles that occur in a gravel bed river have important consequences for its stream ecology, water quality, and overall sediment budgeting. This is particularly relevant in water bodies that experience periodic alternation between sediment supply-limited conditions and high sediment loads, such as downstream from a dam. While experimental efforts have been spent to investigate fine sediment erosion and transport in gravel bed rivers, a comprehensive overview of the leading processes is hampered by the difficulties in performing flow field measurements below the gravel crest level. In this work, a new two-dimensional, semi-implicit numerical scheme for the solution of the Navier-Stokes equations in the presence of deposited and erodible sediment is presented, and tested against analytical solutions and performing numerical tests. The scheme is mass-conservative, computationally efficient, and allows for a fine discretization of the computational domain. Overall, this makes the model suitable to appreciate small-scales phenomena such as inter-grain circulation cells, thus offering a valid alternative to evaluate the shear stress distribution, on which erosion and transport processes depend, compared to traditional experimental approaches. In this work, we present proof-of-concept of the proposed model, while future research will focus on its extension to a three-dimensional and parallelized version, and on its application to real case studies.


1992 ◽  
Vol 16 (3) ◽  
pp. 319-338 ◽  
Author(s):  
Trevor Hoey

Temporal variability in bedload transport rates and spatial variability in sediment storage have been reported with increasing frequency in recent years. A spatial and temporal classification for these features is suggested based on the gravel bedform classification of Church and Jones (1982). The identified scales, meso-, macro-, and mega- are each broad, and within each there is a wide range of processes acting to produce bedload fluctuations. Sampling the same data set with different sampling intervals yields a near linear relationship between sampling interval and pulse period. A range of modelling strategies has been applied to bed waves. The most successful have been those which allow for the three-dimensional nature of sediment storage processes, and which allow changes in the width and depth of stored sediment. The existence of bed waves makes equilibrium in gravel-bed rivers necessarily dynamic. Bedload pulses and bed waves can be regarded as equilibrium forms at sufficiently long timescales.


Author(s):  
Baptiste Marteau ◽  
Kristell Michel ◽  
Hervé Piégay

Gravel augmentation has become common practice to mitigate the effects of decline in upstream sediment supply in gravel-bed rivers. The success of such rehabilitation schemes relies partly on the monitoring strategy and efforts. When long-term monitoring is lacking, some aspects of rehabilitation initiatives suffer more than others, such as insights into functions and functionalities of the river system. Despite temperature being a fundamental parameter determining the general health of river ecosystems, a limited number of studies have tested whether gravel-augmentation can aid restoring thermal functions. With the help of airborne thermal infrared (TIR) imagery, this paper explores the potential positive feedbacks through the monitoring of gravel augmentation actions, of different magnitude, taken on 3 rivers of the Rhône basin in France. A specific trajectory-based Before-After-Control-Impact (BACI) framework using simple indicators, combined with a TIR-based Control-Impact strategy, was designed to assess the success of thermal function restorations based on dynamic fuzzy references. Results indicate that restoring forms is not sufficient to restore thermal functions. The control-impact strategy shows limitations in the sense that two neighbouring reaches can display similar planform characteristics but different thermal functions; what is observed in a control reach should not necessarily be expected following rehabilitation. When assessing thermal processes, a before-after strategy is needed to either serve as a target or help define an adequate target in accordance with changes in the catchment and channel adjustments and responsiveness. We therefore recommend a trajectory-based BACI assessment to identify current biogeophysical conditions within which rehabilitation can be assessed. From a technical perspective, airborne TIR proved to be useful to rapidly map surface temperature over dozens of kilometres at high resolution, and can be advocated as a powerful tool to monitor and diagnose thermal functions of gravel-bed rivers. With an increasing number of rehabilitation schemes, and increasing pressure of global changes on rivers, we suggest that monitoring of water temperature, even with simple but well-designed sampling strategies, becomes a routine part of river rehabilitation projects.


2017 ◽  
pp. 439-466 ◽  
Author(s):  
Jeremy G. Venditti ◽  
Peter A. Nelson ◽  
Ryan W. Bradley ◽  
Dan Haught ◽  
Alessandro B. Gitto

2018 ◽  
Vol 40 ◽  
pp. 02005 ◽  
Author(s):  
Václav Škarpich ◽  
Miroslav Kubín ◽  
Tomáš Galia ◽  
Stanislav Ruman ◽  
Jan Hradecký

In the last centuries, gravel-bed rivers in developed countries have undergone rapid changes in channel morphology. The most serious problems include channel transformation related to progressive channel narrowing, incision or bed sediment coarsening. The main reasons for transformations were connected to the human interventions, which affected water and sediment fluxes in the basins. This paper summarizes contemporary research activities focused on these negative effects of channel transformations in the Czech flysch Carpathian rivers (the Morávka, the Olše and the Ostravice draining the highest mountainous areas of the Beskydy Mts). As the result of channel transformations, progressive changes in fluvial ecosystem were observed. The initial phytosociological survey demonstrates a higher biodiversity in the floodplain along the preserved multi-thread river channel than along the deeply incised channel in the Morávka River basin. Our observations of aquatic communities demonstrated that the channel transformation connected with incision and coarsening of bed sediments negatively affected fish or lamprey populations in the studied rivers. Regulation, damming and incision of channels caused changes of hydrological regime linked with gradual drying of floodplain. Additionally, a large set of hydraulic structures, bridges or weirs were affected by undercutting and progressive destruction in the Ostravice, Olše and Morávka River basins, which is assigned to increased transport capacity of regulated channels together with decreased sediment supply from mountainous parts.


2021 ◽  
Author(s):  
Mel O. Guirro ◽  
Rebecca A. Hodge ◽  
Fiona Clubb ◽  
Laura Turnbull

<p>Sediment transport in rivers depends on interactions between sediment supply, topography, and flow characteristics. Erosion in bedrock rivers controls topography and is paramount in landscape evolution models. The riverbed cover indicates sediment transport processes: alluvial cover indicates low transport capacity or high sediment supply, and bedrock cover demonstrates high transport capacity or low sediment supply. This study aims to evaluate controls on the spatial distributions of bedrock and alluvial covers, by analysing scaling geometric relations between bedrock and alluvial channels. A Principal Component Analysis (PCA) was conducted to evaluate correlations between river slope, depth, width, and sediment size. The two principal components were used to implement a clustering analysis in order to identify differences in alluvial and bedrock sections. Spatial distributions of mixed bedrock-alluvial sections were investigated from two datasets - Scottish Highlands (Whitbread 2015) and the San Gabriel Mountains in the USA (Dibiase 2011)-, representing different environmental conditions, such as erosion rates, lithology, tectonics, and climate. The rock strength of both areas is high, and therefore it is excluded as a factor that explains the difference between the areas. The results of the cluster analysis were different in each environment. The main sources of variation among river sections identified by PCA were slope and width for the San Gabriel Mountains, and drainage area and depth for the Scottish Highlands. The rivers in the Scottish Highlands formed clusters that differentiate bedrock and alluvial patches, showing a clear geometric distinction between channels. However, the river analysis from the San Gabriel Mountains showed no clusters. Bedrock rivers are typically described as narrower and steeper than alluvial rivers, as demonstrated by rivers in the Scottish Highlands (e.g. slope was around 0.1 m/m for bedrock sections and 0.01 m/m for alluvial sections). However, this may not be always the case: both bedrock and alluvial sections in San Gabriel Mountains presented similar slope around 0.1 m/m. The inability to demonstrate significant geometry differences in bedrock and alluvial sections in the San Gabriel Mountains may be due to the frequency and magnitude of sediment supply of that region, which are influenced by tectonics and climate. A major difference in the supply of sediment in rivers of the San Gabriel Mountains is the frequent occurrence of debris flow. Non-linear interactions between hydraulic and sediment processes may constantly modify the geometry of bedrock-alluvial channels, increasing the complexity of analysis at larger temporal and spatial scales. This study is part of the i-CONN project, which links connectivity in different scientific disciplines. A sediment connectivity assessment in different environments and scales may be useful to evaluate the controls on the spatial distribution of bedrock and alluvial rivers.</p><p> </p><p>Dibiase, R.A. 2011. Tectonic Geomorphology of the San Gabriel Mountains, CA. PhD Thesis. Arizona State University, Phoenix, 247pp.</p><p>Whitbread, K. 2015. Channel geometry data set for the northwest Scottish Highlands. British Geological Survey Open Report, OR/15/040. 12pp.</p>


2018 ◽  
Vol 49 (4) ◽  
pp. 220-227 ◽  
Author(s):  
Vito Ferro ◽  
Paolo Porto

Previous studies showed that integrating a power velocity profile, deduced applying dimensional analysis and the incomplete self-similarity condition, the flow resistance equation for open channel flow can be obtained. At first, in this paper the relationship between the Γ function of the power velocity profile, the channel slope and the Froude number, which was already empirically introduced in a previous paper, is now theoretically deduced. Then this relationship is calibrated using the field measurements of flow velocity, water depth and bed slope carried out in 101 reaches of gravel bed rivers available by literature. The proposed relationship for estimating Γ function and the theoretical flow resistance equation are also tested by an independent dataset of 104 reaches of some gravel bed rivers (Fiumare) in Calabria region. Finally, the theoretically-based relationship for estimating the Γ function is calibrated by the overall available database (205 reaches). In this way the three coefficients of the theoretically based Γ function are estimated for a wide range of slopes (0.1%-6.19%) and hydraulic conditions (Froude number values ranging from 0.08 to 1.25). In conclusion, the analysis shows that the Darcy-Weisbach friction factor for gravel bed rivers can be accurately estimated by the approach based on a power-velocity profile and the theoretically-based relationship proposed for estimating Γ function. The analysis also points out a performance in estimating mean flow velocity better than that obtained in a previous study carried out by the authors.


2021 ◽  
Author(s):  
Matteo Saletti ◽  
Marwan Hassan

<p>In gravel-bed rivers the relation between the magnitude and frequency of sediment input, the threshold for motion and channel stability is still not fully understood.</p><p>Here we present results from a 280-hour long flume experiment, in which poorly sorted sediment was fed episodically in an 18-m long, 2.2%-steep channel. The experiment included 7 consecutive runs lasting 40 hours each characterized by a constant water discharge but different sediment supply regimes (i.e., with no feed, constant feed and sediment pulses). Several measurements of sediment transport, flow depth and bed structures were taken along the flume, to assess how changes in sediment supply influence particle mobility and channel stability.</p><p>Our results show that the surface grain‐size distribution coarsened quickly, developing an armored layer that persisted throughout the entire experiment with only short-lived changes after sediment pulses. Grain clusters and other bed structures developed continuously during the experiments, changing dynamically in response to sediment pulses.</p><p>We estimated the thresholds of motion with three different methods, all of which yielded consistent results. Overall, the threshold for motion increased during the experiment, fluctuating in response to changes in sediment input. Our results provide further evidence to the idea that the threshold for motion in gravel-bed rivers is not a constant, but changes as a state parameter. These changes in our experiments are controlled by (a) the sediment supply regime, (b) the degree of bed structuring, and (c) the history of bed evolution. These outcomes suggest that sediment supply regime is a primary control on bed surface evolution and the channel stabilizing function played by surface structures.</p>


1999 ◽  
Vol 35 (11) ◽  
pp. 3523-3530 ◽  
Author(s):  
John M. Buffington ◽  
David R. Montgomery

2019 ◽  
Vol 7 (2) ◽  
pp. 609-631 ◽  
Author(s):  
Stefanie Tofelde ◽  
Sara Savi ◽  
Andrew D. Wickert ◽  
Aaron Bufe ◽  
Taylor F. Schildgen

Abstract. The sensitivity of fluvial systems to tectonic and climatic boundary conditions allows us to use the geomorphic and stratigraphic records as quantitative archives of past climatic and tectonic conditions. Thus, fluvial terraces that form on alluvial fans and floodplains as well as the rate of sediment export to oceanic and continental basins are commonly used to reconstruct paleoenvironments. However, we currently lack a systematic and quantitative understanding of the transient evolution of fluvial systems and their associated sediment storage and release in response to changes in base level, water input, and sediment input. Such knowledge is necessary to quantify past environmental change from terrace records or sedimentary deposits and to disentangle the multiple possible causes for terrace formation and sediment deposition. Here, we use a set of seven physical experiments to explore terrace formation and sediment export from a single, braided channel that is perturbed by changes in upstream water discharge or sediment supply, or through downstream base-level fall. Each perturbation differently affects (1) the geometry of terraces and channels, (2) the timing of terrace cutting, and (3) the transient response of sediment export from the basin. In general, an increase in water discharge leads to near-instantaneous channel incision across the entire fluvial system and consequent local terrace cutting, thus preserving the initial channel slope on terrace surfaces, and it also produces a transient increase in sediment export from the system. In contrast, a decreased upstream sediment-supply rate may result in longer lag times before terrace cutting, leading to terrace slopes that differ from the initial channel slope, and also lagged responses in sediment export. Finally, downstream base-level fall triggers the upstream propagation of a diffuse knickzone, forming terraces with upstream-decreasing ages. The slope of terraces triggered by base-level fall mimics that of the newly adjusted active channel, whereas slopes of terraces triggered by a decrease in upstream sediment discharge or an increase in upstream water discharge are steeper compared to the new equilibrium channel. By combining fill-terrace records with constraints on sediment export, we can distinguish among environmental perturbations that would otherwise remain unresolved when using just one of these records.


Sign in / Sign up

Export Citation Format

Share Document