channel adjustments
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 11)

H-INDEX

22
(FIVE YEARS 2)

Geomorphology ◽  
2021 ◽  
pp. 107715
Author(s):  
Paolo Magliulo ◽  
Federica Bozzi ◽  
Guido Leone ◽  
Francesco Fiorillo ◽  
Natalia Leone ◽  
...  

Author(s):  
Baptiste Marteau ◽  
Kristell Michel ◽  
Hervé Piégay

Gravel augmentation has become common practice to mitigate the effects of decline in upstream sediment supply in gravel-bed rivers. The success of such rehabilitation schemes relies partly on the monitoring strategy and efforts. When long-term monitoring is lacking, some aspects of rehabilitation initiatives suffer more than others, such as insights into functions and functionalities of the river system. Despite temperature being a fundamental parameter determining the general health of river ecosystems, a limited number of studies have tested whether gravel-augmentation can aid restoring thermal functions. With the help of airborne thermal infrared (TIR) imagery, this paper explores the potential positive feedbacks through the monitoring of gravel augmentation actions, of different magnitude, taken on 3 rivers of the Rhône basin in France. A specific trajectory-based Before-After-Control-Impact (BACI) framework using simple indicators, combined with a TIR-based Control-Impact strategy, was designed to assess the success of thermal function restorations based on dynamic fuzzy references. Results indicate that restoring forms is not sufficient to restore thermal functions. The control-impact strategy shows limitations in the sense that two neighbouring reaches can display similar planform characteristics but different thermal functions; what is observed in a control reach should not necessarily be expected following rehabilitation. When assessing thermal processes, a before-after strategy is needed to either serve as a target or help define an adequate target in accordance with changes in the catchment and channel adjustments and responsiveness. We therefore recommend a trajectory-based BACI assessment to identify current biogeophysical conditions within which rehabilitation can be assessed. From a technical perspective, airborne TIR proved to be useful to rapidly map surface temperature over dozens of kilometres at high resolution, and can be advocated as a powerful tool to monitor and diagnose thermal functions of gravel-bed rivers. With an increasing number of rehabilitation schemes, and increasing pressure of global changes on rivers, we suggest that monitoring of water temperature, even with simple but well-designed sampling strategies, becomes a routine part of river rehabilitation projects.


2020 ◽  
Vol 13 (2) ◽  
pp. 17-24
Author(s):  
Gabriela Ioana-Toroimac ◽  
Liliana Zaharia ◽  
Gianina Neculau ◽  
Gabriel Minea

Despite numerous researches on river channel incision, there are fewer studies on the impact of channel adjustments on floods. This paper aims to investigate channel adjustments and to analyse their impact on the frequency of floods by estimating the return period of the bankfull discharge of the Prahova River in the South-Eastern Subcarpathians (Romania). The study is based on the analysis of the maximum annual discharges and cross-section profiles of the Prahova River at Câmpina gauging station (1976–2015). To estimate the return period of the bankfull discharge, the log Pearson III distribution was used. Overall, the maximum depth and the cross-section area at the bankfull stage increased during the analysed period, indicating channel incision and lateral stability. The bankfull discharge of 1976 could be reached every year and the one of 2015 could occur almost every 5 years. Therefore, due to channel incision and increased channel capacity, overflowing the bankfull stage is a less frequent hazard on the Prahova River at Câmpina gauging station. River management appears to maintain this situation as no measure is taken to decrease channel incision.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 307 ◽  
Author(s):  
Nicoletta Maria de Musso ◽  
Domenico Capolongo ◽  
Massimo Caldara ◽  
Nicola Surian ◽  
Luigi Pennetta

Channel changes are receiving growing interest in relation to the relevant implications for river management and restoration. In this kind of analysis, purely qualitative approaches have been gradually replaced by quantitative approaches aimed at reconstructing the temporal variations in parameters (e.g., channel width and depth) to investigate not only the evolutionary trend of the river but also the possible cause-effect connections. This paper investigates the channel dynamics in the Basento River (Basilicata Region, Italy) over the past 150 years, when the river was heavily affected by human activities (e.g., hydraulic interventions and gravel mining) and climate changes. Channel adjustments were analysed with historical maps, aerial photos, and geomorphological surveys. The results show that the channel underwent a strong narrowing during the twentieth century, similar to many rivers in Italy, with the most intense phase from the 1950s to the 1990s (with the width varying from −30% to −80%). The morphology pattern remained almost completely unchanged, apart from a few reaches located in the hilly area that were affected by intense modifications before the 1940s. The causes of channel adjustments were identified as human disturbances (land use variations, channel interventions at the reach scale, sediment mining) from the end of the 1800s to present, as well as natural factors (changes in frequency, duration, and intensity of flood events), whose effects have intensified since the late 1990s.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 148 ◽  
Author(s):  
Paolo Magliulo ◽  
Alessio Valente

On 15 October 2015, the floodplain of the Calore River underwent a destructive flood, with a stream stage increase up to 10 m. In this paper, we describe the GIS-based, object-oriented geomorphological map of the overflooded sectors of the Calore River floodplain near Benevento. The map graphically represents the field-checked results of a detailed geomorphological study carried out by means of GIS analysis of historical and topographic maps and orthophotos. Particular attention was devoted to the analysis of the channel adjustments experienced by the Calore River since the end of the 19th century, which shaped most of the landforms in the floodplain. The results showed that the investigated floodplain is characterized by abandoned channels, anthropogenic landforms, and five orders of recent river terraces separated by gently-sloping inactive fluvial scarps, less than 2 m high. On the oldest and/or more distal sectors of the floodplain, landforms are badly preserved, probably due to the more prolonged reshaping by natural erosional processes and anthropogenic activities, and to the high erodibility of the loose sediments in which they are shaped. The proposed map could be a key tool for a correct flood hazard assessment in the Benevento area, permitting thematic maps that avoid or reduce the negative effects of events similar to the 15 October 2015 flood.


2019 ◽  
Vol 50 (5) ◽  
pp. 1359-1375
Author(s):  
Fan Chen ◽  
Li Chen ◽  
Wei Zhang ◽  
Jianqiao Han ◽  
Junzhou Wang

Abstract Upstream damming has profoundly impacted downstream channel morphology by altering inflowing water and sediment conditions, which can mostly be ascribed to variations in the flow hydrograph and sediment supply regime. In this paper, channel erosion and deposition during different flow-sediment processes are quantified using a 2D hydro-morphodynamic model. Our results revealed that the net erosion mainly occurred during the flood season when the flow discharges were above 15,000 m3/s. Together, larger peak discharges and less sediment supply could produce greater net erosion. Flow hydrograph variations could alter the inundation extent, thus creating a more widespread redistribution of channel deposition and erosion and possibly causing a shift in the active channel adjustment area, where more channel scouring and siltation occurred. The channel adjustments caused by the sediment supply regime variations underwent a gradual downward propagation process, and most of the riverbed thalweg profile variations could first be observed at a very short distance from the studied reach entrance. A larger cross-sectional area and channel depth as well as a lower width-depth ratio could result from larger floods and less incoming upstream sediment load. We found that a comprehensive flow-sediment combination coefficient with a value of m ranging from 2 to 4 most appropriately reflected the post-dam flow-sediment imbalance regime at the studied reach, which implied the leading role of flow hydrograph variations in shaping channel morphology. In summary, the combined results presented herein for the Shashi Reach of the Yangtze River can provide a better understanding of the downstream morphological impacts of different flow-sediment processes caused by dam operation.


Geomorphology ◽  
2019 ◽  
Vol 337 ◽  
pp. 15-30 ◽  
Author(s):  
Rafael Baena-Escudero ◽  
Massimo Rinaldi ◽  
Belén García-Martínez ◽  
Inmaculada C. Guerrero-Amador ◽  
Laura Nardi

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 672 ◽  
Author(s):  
Somaiyeh Khaleghi ◽  
Nicola Surian

Channel adjustments in Iranian rivers have been intense over the last decades due to natural and human factors. Iran has six major basins, all with different climates, from very humid to very arid. This work is a review of the available studies and data about channel adjustments in Iranian rivers, and aims to reconstruct a first outline, at a national scale, of types, magnitude, and causes of adjustments. The results show that most of the rivers have undergone incision (1 to 2 m and, in some cases, up to 6 to 7 m) and narrowing (from 19% to 73%), although widening (from 22% to 349%) has occurred in some rivers. Narrowing is due to dams and sediment mining; widening is due to climate change and sediment mining. Incision is due to gravel and sand mining, dams, channelization, with in-channel mining being the main cause of incision. Channel adjustments have occurred in basins with different climates, but it seems that widening has been more intense in arid and semi-arid climates. Such adjustments have several negative effects (e.g., damage to bridges, degradation of river ecosystems, and instability of banks). The comparison between Iran and other countries shows that narrowing and incision have been the dominant processes in most of the rivers, while damming and in-channel mining have been used as the main controlling factors. Data about adjustments in Iranian rivers are neither homogeneous nor complete for all the rivers. This lack of completeness implies that our understanding of channel changes, and their causes, should be improved by further investigation.


Sign in / Sign up

Export Citation Format

Share Document