Quantifying errors of multiple gridded soil moisture products in Sweden using triple collocation analysis and traditional evaluation method with ICOS data

Author(s):  
Zheng Duan ◽  
Nina del Rosario ◽  
Jianzhi Dong ◽  
Hongkai Gao ◽  
Jian Peng ◽  
...  

<p>Soil moisture is an Essential Climate Variable (ECV) that plays an important role in land surface-atmosphere interactions. Accurate monitoring of soil moisture is essential for many studies in water, energy and carbon cycles. However, soil moisture is characterized with high spatial and temporal variability, making conventional point-based in-situ measurements difficult to sufficiently capture these variabilities given the often lack of dense in-situ network for most regions. Considerable efforts have been made to explore satellite remote sensing, hydrological and land surface models in estimating and mapping soil moisture, leading to increasing availability of different gridded soil moisture products at various spatial and temporal resolutions. The accuracy of an individual product varies between regions and needs to be evaluated in order to guide the selection of the most suitable products for certain applications. Such evaluation will also benefit product development and improvements. The most common (traditional) evaluation method is to calculate error metrics of the evaluated products with in-situ measurements as ground truth. The triple collocation (TC) analysis has been widely used and demonstrated powerful in evaluation of various products for different geophysical variables when ground truth is not available.</p><p>The Integrated Carbon Observation System (ICOS) is a research infrastructure with aim to quantify the greenhouse gas balance of Europe and adjacent regions. A standardized network of more than 140 research stations in 13 member states has been established and is operated by ICOS to provide direct measurements of climate relevant variables. The ICOS Carbon Portal offers a 'one-stop shop' freely for all ICOS data products at https://www.icos-cp.eu/observations/carbon-portal. This study evaluates for the first time a large number of different satellite-based and reanalysis surface soil moisture products at varying spatial and temporal resolutions using ICOS measurements from 2015 over Sweden. Evaluated products include ESA CCI, ASCAT, SMAP, SMOS, Sentinel-1 derived, ERA5 and GLDAS products. In order to quantify spatial patterns of errors of each individual product, TC analysis is applied to different combinations of gridded products for spatial evaluation across entire Sweden. The performance of products in different seasons and years is evaluated. The similarity and difference among different products for the drought period in the year 2018 is particularly assessed. This study is expected to improve our understanding of the applicability and limitations of various gridded soil moisture products in the Nordic region.</p>

2021 ◽  
Author(s):  
Adam Pasik ◽  
Wolfgang Preimesberger ◽  
Bernhard Bauer-Marschallinger ◽  
Wouter Dorigo

<p>Multiple satellite-based global surface soil moisture (SSM) datasets are presently available, these however, address exclusively the top layer of the soil (0-5cm). Meanwhile, root-zone soil moisture cannot be directly quantified with remote sensing but can be estimated from SSM using a land surface model. Alternatively, soil water index (SWI; calculated from SSM as a function of time needed for infiltration) can be used as a simple approximation of root-zone conditions. SWI is a proxy for deeper layers of the soil profile which control evapotranspiration, and is hence especially important for studying hydrological processes over vegetation-covered areas and meteorological modelling.</p><p>Here we introduce the advances in our work on the first operationally capable SWI-based root-zone soil moisture dataset from C3S Soil Moisture v201912 COMBINED product, spanning the period 2002-2020. The uniqueness of this dataset lies in the fact that T-values (temporal lengths ruling the infiltration) characteristic of SWI were translated into particular soil depths making it much more intuitive, user-friendly and easily applicable. Available are volumetric soil moisture values for the top 1 m of the soil profile at 10 cm intervals, where the optimal T-value (T-best) for each soil layer is selected based on a range of correlation metrics with in situ measurements from the International Soil Moisture Network (ISMN) and the relevant soil and climatic parameters.<br>Additionally we present the results of an extensive global validation against in situ measurements (ISMN) as well as the results of investigations into the relationship between a range of soil and climate characteristics and the optimal T-values for particular soil depths.</p>


2020 ◽  
Author(s):  
Leqiang Sun ◽  
Stéphane Belair ◽  
Marco Carrera ◽  
Bernard Bilodeau

<p>Canadian Space Agency (CSA) has recently started receiving and processing the images from the recently launched C-band RADARSAT Constellation Mission (RCM). The backscatter and soil moisture retrievals products from the previously launched RADARSAT-2 agree well with both in-situ measurements and surface soil moisture modeled with land surface model Soil, Vegetation, and Snow (SVS). RCM will provide those products at an even better spatial coverage and temporal resolution. In preparation of the potential operational application of RCM products in Canadian Meteorological Center (CMC), this paper presents the scenarios of assimilating either soil moisture retrieval or outright backscatter signal in a 100-meter resolution version of the Canadian Land Data Assimilation System (CaLDAS) on field scale with time interval of three hours. The soil moisture retrieval map was synthesized by extrapolating the regression relationship between in-situ measurements and open loop model output based on soil texture lookup table. Based on this, the backscatter map was then generated with the surface roughness retrieved from RADARSAT-2 images using a modified Integral Equation Model (IEM) model. Bias correction was applied to the Ensemble Kalman filter (EnKF) to mitigate the impact of nonlinear errors introduced by multi-sourced perturbations. Initial results show that the assimilation of backscatter is as effective as assimilating soil moisture retrievals. Compared to open loop, both can improve the analysis of surface moisture, particularly in terms of reducing bias.  </p>


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8371
Author(s):  
Irina Ontel ◽  
Anisoara Irimescu ◽  
George Boldeanu ◽  
Denis Mihailescu ◽  
Claudiu-Valeriu Angearu ◽  
...  

This paper will assess the sensitivity of soil moisture anomaly (SMA) obtained from the Soil water index (SWI) product Metop ASCAT, to identify drought in Romania. The SWI data were converted from relative values (%) to absolute values (m3 m−3) using the soil porosity method. The conversion results (SM) were validated using soil moisture in situ measurements from ISMN at 5 cm depths (2015–2020). The SMA was computed based on a 10 day SWI product, between 2007 and 2020. The analysis was performed for the depths of 5 cm (near surface), 40 cm (sub surface), and 100 cm (root zone). The standardized precipitation index (SPI), land surface temperature anomaly (LST anomaly), and normalized difference vegetation index anomaly (NDVI anomaly) were computed in order to compare the extent and intensity of drought events. The best correlations between SM and in situ measurements are for the stations located in the Getic Plateau (Bacles (r = 0.797) and Slatina (r = 0.672)), in the Western Plain (Oradea (r = 0.693)), and in the Moldavian Plateau (Iasi (r = 0.608)). The RMSE were between 0.05 and 0.184. Furthermore, the correlations between the SMA and SPI, the LST anomaly, and the NDVI anomaly were significantly registered in the second half of the warm season (July–September). Due to the predominantly agricultural use of the land, the results can be useful for the management of water resources and irrigation in regions frequently affected by drought.


2017 ◽  
Vol 18 (10) ◽  
pp. 2621-2645 ◽  
Author(s):  
Rolf H. Reichle ◽  
Gabrielle J. M. De Lannoy ◽  
Qing Liu ◽  
Joseph V. Ardizzone ◽  
Andreas Colliander ◽  
...  

Abstract The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present (within 3 days from real time) and provides 3-hourly, global, 9-km resolution estimates of surface (0–5 cm) and root-zone (0–100 cm) soil moisture and land surface conditions. This study presents an overview of the L4_SM algorithm, validation approach, and product assessment versus in situ measurements. Core validation sites provide spatially averaged surface (root zone) soil moisture measurements for 43 (17) “reference pixels” at 9- and 36-km gridcell scales located in 17 (7) distinct watersheds. Sparse networks provide point-scale measurements of surface (root zone) soil moisture at 406 (311) locations. Core validation site results indicate that the L4_SM product meets its soil moisture accuracy requirement, specified as an unbiased RMSE (ubRMSE, or standard deviation of the error) of 0.04 m3 m−3 or better. The ubRMSE for L4_SM surface (root zone) soil moisture is 0.038 m3 m−3 (0.030 m3 m−3) at the 9-km scale and 0.035 m3 m−3 (0.026 m3 m−3) at the 36-km scale. The L4_SM estimates improve (significantly at the 5% level for surface soil moisture) over model-only estimates, which do not benefit from the assimilation of SMAP brightness temperature observations and have a 9-km surface (root zone) ubRMSE of 0.042 m3 m−3 (0.032 m3 m−3). Time series correlations exhibit similar relative performance. The sparse network results corroborate these findings over a greater variety of climate and land cover conditions.


2019 ◽  
Vol 11 (6) ◽  
pp. 656 ◽  
Author(s):  
Lei Fan ◽  
A. Al-Yaari ◽  
Frédéric Frappart ◽  
Jennifer Swenson ◽  
Qing Xiao ◽  
...  

Hydro-agricultural applications often require surface soil moisture (SM) information at high spatial resolutions. In this study, daily spatial patterns of SM at a spatial resolution of 1 km over the Babao River Basin in northwestern China were mapped using a Bayesian-based upscaling algorithm, which upscaled point-scale measurements to the grid-scale (1 km) by retrieving SM information using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived land surface temperature (LST) and topography data (including aspect and elevation data) and in situ measurements from a wireless sensor network (WSN). First, the time series of pixel-scale (1 km) representative SM information was retrieved from in situ measurements of SM, topography data, and LST. Second, Bayesian linear regression was used to calibrate the relationship between the representative SM and the WSN measurements. Last, the calibrated relationship was used to upscale a network of in situ measured SM to map spatially continuous SM at a high resolution. The upscaled SM data were evaluated against ground-based SM measurements with satisfactory accuracy—the overall correlation coefficient (r), slope, and unbiased root mean square difference (ubRMSD) values were 0.82, 0.61, and 0.025 m3/m3, respectively. Moreover, when accounting for topography, the proposed upscaling algorithm outperformed the algorithm based only on SM derived from LST (r = 0.80, slope = 0.31, and ubRMSD = 0.033 m3/m3). Notably, the proposed upscaling algorithm was able to capture the dynamics of SM under extreme dry and wet conditions. In conclusion, the proposed upscaled method can provide accurate high-resolution SM estimates for hydro-agricultural applications.


2020 ◽  
Vol 12 (17) ◽  
pp. 2819
Author(s):  
Mozhdeh Jamei ◽  
Mohammad Mousavi Baygi ◽  
Ebrahim Asadi Oskouei ◽  
Ernesto Lopez-Baeza

The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission with the MIRAS (Microwave Imaging Radiometer using Aperture Synthesis) L-band radiometer provides global soil moisture (SM) data. SM data and products from remote sensing are relatively new, but they are providing significant observations for weather forecasting, water resources management, agriculture, land surface, and climate models assessment, etc. However, the accuracy of satellite measurements is still subject to error from the retrieval algorithms and vegetation cover. Therefore, the validation of satellite measurements is crucial to understand the quality of retrieval products. The objectives of this study, precisely framed within this mission, are (i) validation of the SMOS Level 1C Brightness Temperature (TBSMOS) products in comparison with simulated products from the L-MEB model (TBL-MEB) and (ii) validation of the SMOS Level 2 SM (SMSMOS) products against ground-based measurements at 10 significant Iranian agrometeorological stations. The validations were performed for the period of January 2012 to May 2015 over the Southwest and West of Iran. The results of the validation analysis showed an RMSE ranging between 9 to 13 K and a strong correlation (R = 0.61–0.84) between TBSMOS and TBL-MEB at all stations. The bias values (0.1 to 7.5 K) showed a slight overestimation for TBSMOS at most of the stations. The results of SMSMOS validation indicated a high agreement (RMSE = 0.046–0.079 m3 m−3 and R = 0.65–0.84) between the satellite SM and in situ measurements over all the stations. The findings of this research indicated that SMSMOS shows high accuracy and agreement with in situ measurements which validate its potential. Due to the limitation of SM measurements in Iran, the SMOS products can be used in different scientific and practical applications at different Iranian study areas.


Author(s):  
I. Sandric ◽  
A. Diamandi ◽  
N. Oana ◽  
D. Saizu ◽  
C. Vasile ◽  
...  

The study presents the validation of SMOS soil moisture satellite products for Romania. The validation was performed with in-situ measurements spatially distributed over the country and with in-situ measurements concentrated in on small area. For country level a number of 20 stations from the national meteorological observations network in Romania were selected. These stations have in-situ measurements for soil moisture in the first 5 cm of the soil surface. The stations are more or less distributed in one pixel of SMOS, but it has the advantage that covers almost all the country with a wide range of environmental conditions. Additionally 10 mobile soil moisture measurements stations were acquired and installed. These are spatially concentrated in one SMOS pixel in order to have a more detailed validation against the soil type, soil texture, land surface temperature and vegetation type inside one pixel. The results were compared and analyzed for each day, week, season, soil type, and soil texture and vegetation type. Minimum, maximum, mean and standard deviation were extracted and analyzed for each validation criteria and a hierarchy of those were performed. An upscaling method based on the relations between soil moisture, land surface temperature and vegetation indices was tested and implemented. The study was financed by the Romanian Space Agency within the framework of ASSIMO project <a href="http://assimo.meteoromania.ro"target="_blank">http://assimo.meteoromania.ro</a>.


Author(s):  
I. Sandric ◽  
A. Diamandi ◽  
N. Oana ◽  
D. Saizu ◽  
C. Vasile ◽  
...  

The study presents the validation of SMOS soil moisture satellite products for Romania. The validation was performed with in-situ measurements spatially distributed over the country and with in-situ measurements concentrated in on small area. For country level a number of 20 stations from the national meteorological observations network in Romania were selected. These stations have in-situ measurements for soil moisture in the first 5 cm of the soil surface. The stations are more or less distributed in one pixel of SMOS, but it has the advantage that covers almost all the country with a wide range of environmental conditions. Additionally 10 mobile soil moisture measurements stations were acquired and installed. These are spatially concentrated in one SMOS pixel in order to have a more detailed validation against the soil type, soil texture, land surface temperature and vegetation type inside one pixel. The results were compared and analyzed for each day, week, season, soil type, and soil texture and vegetation type. Minimum, maximum, mean and standard deviation were extracted and analyzed for each validation criteria and a hierarchy of those were performed. An upscaling method based on the relations between soil moisture, land surface temperature and vegetation indices was tested and implemented. The study was financed by the Romanian Space Agency within the framework of ASSIMO project <a href="http://assimo.meteoromania.ro"target="_blank">http://assimo.meteoromania.ro</a>.


2021 ◽  
Vol 13 (2) ◽  
pp. 228
Author(s):  
Jian Kang ◽  
Rui Jin ◽  
Xin Li ◽  
Yang Zhang

In recent decades, microwave remote sensing (RS) has been used to measure soil moisture (SM). Long-term and large-scale RS SM datasets derived from various microwave sensors have been used in environmental fields. Understanding the accuracies of RS SM products is essential for their proper applications. However, due to the mismatched spatial scale between the ground-based and RS observations, the truth at the pixel scale may not be accurately represented by ground-based observations, especially when the spatial density of in situ measurements is low. Because ground-based observations are often sparsely distributed, temporal upscaling was adopted to transform a few in situ measurements into SM values at a pixel scale of 1 km by introducing the temperature vegetation dryness index (TVDI) related to SM. The upscaled SM showed high consistency with in situ SM observations and could accurately capture rainfall events. The upscaled SM was considered as the reference data to evaluate RS SM products at different spatial scales. In regard to the validation results, in addition to the correlation coefficient (R) of the Soil Moisture Active Passive (SMAP) SM being slightly lower than that of the Climate Change Initiative (CCI) SM, SMAP had the best performance in terms of the root-mean-square error (RMSE), unbiased RMSE and bias, followed by the CCI. The Soil Moisture and Ocean Salinity (SMOS) products were in worse agreement with the upscaled SM and were inferior to the R value of the X-band SM of the Advanced Microwave Scanning Radiometer 2 (AMSR2). In conclusion, in the study area, the SMAP and CCI SM are more reliable, although both products were underestimated by 0.060 cm3 cm−3 and 0.077 cm3 cm−3, respectively. If the biases are corrected, then the improved SMAP with an RMSE of 0.043 cm3 cm−3 and the CCI with an RMSE of 0.039 cm3 cm−3 will hopefully reach the application requirement for an accuracy with an RMSE less than 0.040 cm3 cm−3.


Sign in / Sign up

Export Citation Format

Share Document