Projected changes in wind wave directional spectra and their impact on coastal processes

Author(s):  
Hector Lobeto ◽  
Melisa Menendez ◽  
Iñigo J. Losada ◽  
Ottavio Mazzaretto

<p>The assessment of the projected changes in wave climate due to climate change has been subject of study during the last two decades (Morim et al., 2018), largely due to the severe impacts these changes may have on coastal processes such as flooding and erosion. The wind wave climate is fully described by the sea surface elevation spectrum, which represents the distribution of energy resulting from the contributions of several superimposed waves with different periods and directions. Nevertheless, to this day the standard approach to address the future behavior of wind waves is based on the use of integrated wave parameters (e.g. significant wave height, mean wave period, mean wave direction) as a representation of the full spectrum. In this study, we analyze the changes in wave energy from directional spectra discretized in 24 directions and 32 frequencies in a number of locations distributed across all ocean basins, shedding light on the added value that an assessment based on the full spectrum offers with respect to the standard approach. In addition, the ESTELA method (Pérez et al., 2014) is applied to ease the understanding of the changes obtained in wave energy at the locations of study.</p><p>The spectral approach helps to assess the projected change in the energy of each wave system that reach a specific location. Results demonstrate that the use of integrated wave parameters can mask important information about the sign, magnitude and uncertainty of the actual projected changes in mean wave climate due to the offset of the expected variations in the different wave systems that integrate the spectrum. It is especially relevant at locations where an increase in the wave period or wave energy is hidden by the application of the standard approach, as these parameters are proven to play a key role in coastal processes. In addition, we reach relevant conclusions about the future behavior of swell systems. For instance, a robust increase in the energy carried by swells generated below 40°S can be observed in every ocean basin and both hemispheres, even beyond 30°N. Similarly, a decrease in the energy carried by northern swells can be observed close to the equator.</p>

Author(s):  
Fedor Gippius ◽  
Fedor Gippius ◽  
Stanislav Myslenkov ◽  
Stanislav Myslenkov ◽  
Elena Stoliarova ◽  
...  

This study is focused on the alterations and typical features of the wind wave climate of the Black Sea’s coastal waters since 1979 till nowadays. Wind wave parameters were calculated by means of the 3rd-generation numerical spectral wind wave model SWAN, which is widely used on various spatial scales – both coastal waters and open seas. Data on wind speed and direction from the NCEP CFSR reanalysis were used as forcing. The computations were performed on an unstructured computational grid with cell size depending on the distance from the shoreline. Modeling results were applied to evaluate the main characteristics of the wind wave in various coastal areas of the sea.


Author(s):  
Olga Kuznetsova ◽  
Olga Kuznetsova ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinsky ◽  
...  

Based on numerical modelling evolution of beach under waves with height 1,0-1,5 m and period 7,5 and 10,6 sec as well as spectral wave parameters varying cross-shore analysed. The beach reformation of coastal zone relief is spatially uneven. It is established that upper part of underwater beach profile become terraced and width of the terrace is in direct pro-portion to wave height and period on the seaward boundary but inversely to angle of wave energy spreading. In addition it was ascertain that the greatest transfiguration of profile was accompanied by existence of bound infragravity waves, smaller part of its energy and shorter mean wave period as well as more significant roller energy.


Author(s):  
Fedor Gippius ◽  
Fedor Gippius ◽  
Stanislav Myslenkov ◽  
Stanislav Myslenkov ◽  
Elena Stoliarova ◽  
...  

This study is focused on the alterations and typical features of the wind wave climate of the Black Sea’s coastal waters since 1979 till nowadays. Wind wave parameters were calculated by means of the 3rd-generation numerical spectral wind wave model SWAN, which is widely used on various spatial scales – both coastal waters and open seas. Data on wind speed and direction from the NCEP CFSR reanalysis were used as forcing. The computations were performed on an unstructured computational grid with cell size depending on the distance from the shoreline. Modeling results were applied to evaluate the main characteristics of the wind wave in various coastal areas of the sea.


Author(s):  
Mauricio González Rodríguez ◽  
João Luiz Nicolodi ◽  
Omar Quetzalcóatl Gutiérrez ◽  
Verónica Cánovas Losada ◽  
Antonio Espejo Hermosa

Author(s):  
Olga Kuznetsova ◽  
Olga Kuznetsova ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinsky ◽  
...  

Based on numerical modelling evolution of beach under waves with height 1,0-1,5 m and period 7,5 and 10,6 sec as well as spectral wave parameters varying cross-shore analysed. The beach reformation of coastal zone relief is spatially uneven. It is established that upper part of underwater beach profile become terraced and width of the terrace is in direct pro-portion to wave height and period on the seaward boundary but inversely to angle of wave energy spreading. In addition it was ascertain that the greatest transfiguration of profile was accompanied by existence of bound infragravity waves, smaller part of its energy and shorter mean wave period as well as more significant roller energy.


2020 ◽  
Vol 10 (23) ◽  
pp. 8719
Author(s):  
Cuauhtémoc Franco-Ochoa ◽  
Yedid Zambrano-Medina ◽  
Wenseslao Plata-Rocha ◽  
Sergio Monjardín-Armenta ◽  
Yandy Rodríguez-Cueto ◽  
...  

The last ten years have shown that Climate Change (CC) is a major global issue to attend to. The integration of its effects into coastal impact assessments and adaptation plans has gained great attention and interest, focused on avoiding or minimizing human lives and asset losses. Future scenarios of mean sea level rises and wave energy increase rates have then been computed, but downscaling still remains necessary to assess the possible local effects in small areas. In this context, the effects of CC on the wave climate in the Gulf of California (GC), Mexico, have received little attention, and no previous studies have tackled the long-term trend of wave climate at a regional scale. In this paper, the long-term trends of the wave height, wave period and wave energy in the GC were thus investigated, using the fifth-generation climate reanalysis dataset (ERA5). The long-term shoreline evolution was also examined from historical Landsat images, so as to identify erosional hotspots where intervention can be prioritized. The results indicate that both the mean and extreme wave regimes in the GC are getting more energetic and that two-thirds of the coast is suffering chronic erosion. A discrepancy between the trends of the wave period and wave height in some regions of the Gulf was also found. Finally, the importance of natural processes, human activity and CC in the shoreline change is highlighted, while addressing the need for future permanent field observations and studies in the GC.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hector Lobeto ◽  
Melisa Menendez ◽  
Iñigo J. Losada

Based on a novel approach, present-day and future spectral wind-wave conditions in a high-emission scenario from a seven-member wave climate projection ensemble are compared. The spectral analysis at the selected locations aids in understanding the propagation of swell projected changes from the generation areas across the ocean basins. For example, a projected increase in the energy from Southern Ocean swells can be observed in all ocean basins and both hemispheres, which is especially relevant in the west coast of North America due to the penetration of these swells beyond 30°N. Similarly, a consistent decrease in the energy of large northern Atlantic swells is noted close to the equator. This work provides evidence that assessments based on only integrated wave parameters (e.g., significant wave height and mean wave period) can mask information about the sign, magnitude, and robustness of the actual wave climate changes due to the offset of positive and negative variations within the spectrum, leading to a significant underestimation of the change associated with certain wave systems.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 460
Author(s):  
Takvor H. Soukissian ◽  
Flora E. Karathanasi

In the context of wave resource assessment, the description of wave climate is usually confined to significant wave height and energy period. However, the accurate joint description of both linear and directional wave energy characteristics is essential for the proper and detailed optimization of wave energy converters. In this work, the joint probabilistic description of wave energy flux and wave direction is performed and evaluated. Parametric univariate models are implemented for the description of wave energy flux and wave direction. For wave energy flux, conventional, and mixture distributions are examined while for wave direction proven and efficient finite mixtures of von Mises distributions are used. The bivariate modelling is based on the implementation of the Johnson–Wehrly model. The examined models are applied on long-term measured wave data at three offshore locations in Greece and hindcast numerical wave model data at three locations in the western Mediterranean, the North Sea, and the North Atlantic Ocean. A global criterion that combines five individual goodness-of-fit criteria into a single expression is used to evaluate the performance of bivariate models. From the optimum bivariate model, the expected wave energy flux as function of wave direction and the distribution of wave energy flux for the mean and most probable wave directions are also obtained.


Sign in / Sign up

Export Citation Format

Share Document