The role of sedimentology in the mobility of debris avalanches: Evidence from their deposits and granular flow experiments

Author(s):  
Symeon Makris ◽  
Irene Manzella ◽  
Paul Cole ◽  
Matteo Roverato

<p>Debris avalanches and lahars are among the most destructive and hazardous mass flows in volcanic environments making them important to understand from a hazard assessment perspective. Sedimentological characteristics of their deposits are important for assessing their propagation and emplacement mechanisms. Here, we compare the sedimentology of nine volcanic debris avalanches and eight lahars, by the descriptive statistics: median grain size, sand, gravel and finer particle proportion, skewness, and sorting.</p><p>Results suggest that lahars and debris avalanches diverge in their grain size distribution evolution during propagation, even when sourced from the same material. Increasing bimodality, evolution to negative skewness, with decreasing sediment size, accompanied by very poor sorting suggest comminution of particles due to particle-particle interactions in debris avalanches. Instead, preferential deposition of the coarsest particles and improved sorting suggest that the decrease in grain size of lahars is the result of debulking. The divergence is mainly caused by the high water content in lahars, which introduce different processes during propagation. This suggests, in agreement with previous studies, that debris avalanches can be considered as dense granular flows where the effect of inertial collisions of solid fragments are more important than fluid effects.</p><p>Present findings and previous sedimentological studies suggest that both volcanic and non-volcanic debris avalanches exhibit bimodal grain-size distributions, at least locally, in areas of high shear accommodation. Following these results, an experimental campaign has been carried out to test the effect of bimodality on the propagation of granular flows. These experiments are flows of bidisperse granular material on an initial inclined plane, with a horizontal accumulation surface at the bottom.  Findings confirm that the bimodality of the grain size distribution generates a more efficient shearing arrangement, which can increase the mobility of granular flows in the same way recorded in debris avalanche deposits.</p>

2021 ◽  
Author(s):  
Haruka Tsunetaka ◽  
Norifumi Hotta ◽  
Yuichi Sakai ◽  
Thad Wasklewicz

Abstract. Knowledge of the processes driving debris-flow fan evolution are critical in the support of efforts to mitigate related hazards, reduce risk to populations and infrastructure, and reconstruct the history of sediment dynamics in mountainous areas. Research on debris-flow fan development has focused on topographic controls, debris-flow volume and rheology, and the sequence of occurrence of debris flows. While these items have explained a great deal about fan formation and specifically avulsion and runout mechanisms, there is a need to further investigate other properties as they relate to debris-flow fan formative process. Here, we examined the role of debris-flow grain-size distribution on fan formation. Flume experiments were employed to examine the morphology of debris-flow fans that resulted from flows with mono- or multi-granular sediment composition with the same average grain size. All other flow characteristics were held constant. The mono-granular flows formed a symmetric-like fan morphology because there was little avulsion during the formation process. The multi-granular flows produced fans with an asymmetric morphology. Avulsions occurred on both lateral extents of the fan during the early stages of fan development and caused the runout direction to shift produce the fan asymmetry. Grain-size distribution was closely related to spatial diversity in fan morphology and stratigraphy.


2021 ◽  
Author(s):  
Giulia Marchetti ◽  
Simone Bizzi ◽  
Barbara Belletti ◽  
Barbara Lastoria ◽  
Francesco Comiti ◽  
...  

A comprehensive understanding of river dynamics requires quantitative knowledge of the grain size distribution of bed sediments and its variation across different temporal and spatial scales. Several techniques are already available for grain size assessment based on field and remotely sensed data. However, the existing methods are only applicable on small spatial scales and on short time scales. Thus, the operational measurement of grain size distribution of river bed sediments at the catchment scale remains an open problem. A solution could be the use of satellite images as the main imaging platform. However, this would entail retrieving information at sub-pixel scales. In this study, we propose a new approach to retrieve sub-pixel scale grain size class information from Copernicus Sentinel-2 imagery building upon a new image-based grain size mapping procedure. Three Italian gravel-bed rivers featuring different morphologies were selected for Unmanned Aerial Vehicle (UAV) acquisitions coupled to field surveys and lab analysis meant to serve as ground truth grain size data. Grain size maps on river bars were generated in each study site by exploiting image texture measurements, upscaled and co-registered with Sentinel-2 data resolution. Relationships between the grain sizes measured and the reflectance values in Sentinel-2 imagery were analyzed by using a machine learning framework. Results show statistically significant predictive models (MAE of ±8.34 mm and R2=0.92). The trained model was applied on 300 km of the Po river in Italy and allows to detect grain size longitudinal variation and to identify the gravel-sand transition occurring along this river length.Our proposed approach based on freely available satellite data calibrated by low-cost automated drone technology can provide reasonably accurate estimates of surface grain size classes, in the range of sand to gravel, for bar sediments in medium to large river channels, over lengths of hundreds of kilometers.


Author(s):  
Agnieszka Hejduk ◽  
Leszek Hejduk

Abstract Variability of suspended sediment grain size distribution in winter floods. The work presents the results of research concern variability of suspended sediment grain size, transported during the winter floods in agricultural catchment, in the period of hydrological years 2012-2015. The information about grain size distribution from nine winter flood events were collected over the study period, which allowed to analyze the variability of suspended sediment particle size during the various events. Grain size of sediment was determined using a laser particle size analyzer Mastersizer Microplus from Malvern Instruments Ltd. Variability of individual particle size classes were observed in each flood. Sand fraction dominated in seven of nine measured events. There was no significant increase of suspended sediment size in relation to the maximum of discharge. It can be explain by a relatively low discharge of recorded events. The percentage of material classified as clay (<4 μm) ranged from 0.08 to 1.01%, silt-sized material (>4 and <63 μm) ranged between 9.31 and 67.17% and sand-size material (>63 μm) ranged from 32.01 to 90.61%. The relationship between the particle size and the discharge requires further studies. The diameter d10, d50 and d90 and a standard deviation were calculated for each flood. Mean values of d50 for individual flood ranged between 41.05 and 191.32 μm with average value of 99.01 μm and average standard deviation of 32.57.


1970 ◽  
Vol 2 (2) ◽  
pp. K69-K73 ◽  
Author(s):  
M. Reinbold ◽  
H. Hoffmann

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2849
Author(s):  
Marcin Jan Dośpiał

This paper presents domain and structure studies of bonded magnets made from nanocrystalline Nd-(Fe, Co)-B powder. The structure studies were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Mössbauer spectroscopy and X-ray diffractometry. On the basis of performed qualitative and quantitative phase composition studies, it was found that investigated alloy was mainly composed of Nd2(Fe-Co)14B hard magnetic phase (98 vol%) and a small amount of Nd1.1Fe4B4 paramagnetic phase (2 vol%). The best fit of grain size distribution was achieved for the lognormal function. The mean grain size determined from transmission electron microscopy (TEM) images on the basis of grain size distribution and diffraction pattern using the Bragg equation was about ≈130 nm. HRTEM images showed that over-stoichiometric Nd was mainly distributed on the grain boundaries as a thin amorphous border of 2 nm in width. The domain structure was investigated using a scanning electron microscope and metallographic light microscope, respectively, by Bitter and Kerr methods, and by magnetic force microscopy. Domain structure studies revealed that the observed domain structure had a labyrinth shape, which is typically observed in magnets, where strong exchange interactions between grains are present. The analysis of the domain structure in different states of magnetization revealed the dynamics of the reversal magnetization process.


Sign in / Sign up

Export Citation Format

Share Document