Simulating streamflow in a temporary karst river system

Author(s):  
Giovanni Francesco Ricci ◽  
Marco Centanni ◽  
Francesco Gentile ◽  
Anna Maria De Girolamo

<p>Most of the basins in the Mediterranean Region are characterized by a large spatial gradient in rainfall and temperature and heterogeneity in lithology, soil, and land use. Such environmental factors determine a specific hydrological regime of the river systems that generally includes periods of absence of flow and flash flood events.</p><p>In the past decades, several countries in South Europe did not invest resources for the monitoring of the intermittent river systems. Currently, several basins have limited time series of streamflow and water quality data. In addition, it is not rare the case of climate stations not well distributed in the basin as well as the presence of several gaps in the time series.</p><p>The lithology and geological features are among the main factors affecting the flow regime, playing a crucial role in groundwater and surface-water interaction and water exchange for which the flow may appear and disappear along with the river network. In such a complex environment, the hydrological and water quality model set up and run may be challenging.</p><p>Through a case study, this work aims to face some challenges and to define problem-solving in simulating hydrology in Mediterranean basins. The area is characterized by (i) heterogeneity in lithology with karst areas, (ii) limited flow data availability for calibrating the model, (iii) flow intermittence in the river network. The Soil and Water Assessment Tool (SWAT) was applied to the Canale D’aiedda  (Puglia, Italy), a temporary karst river basin under the Mediterranean climate and with limited data availability. Different solutions were tested to simulate the hydrological processes in the karstic areas including both GIS elaborations and model parameters settings and modifications. Among the main parameters, infiltration and transmission losses and soil hydraulic parameters resulted in the most relevant in simulating hydrology in the karst areas. To calibrate the model, a split-in-space procedure was adopted to overcome the limited streamflow measurement availability. Finally, a zero-flow threshold was introduced to predict the number of zero-flow days in the intermittent river reaches, simulating accurately the flow intermittence and the extreme low flow.</p><p>The results show that by using specific strategies in setting-up and calibrating the model, the SWAT model is able to simulate daily streamflow with acceptable performances in complex river basins.</p>

2020 ◽  
Author(s):  
Matt Fry ◽  
Jan Rosecký

<p>Hydrological analyses generally require information from locations across a river system, and knowledge on how these locations are linked within that system. Hydrological monitoring data e.g. from sensors or samples of the status of river flow and water quality, and datasets on factors influencing this status e.g. sewage treatment input, riparian land use, lakes, abstractions, etc., are increasingly available as open datasets, sometimes via web-based APIs. However, retrieving information, for data discovery or for direct analysis, based on location within the river system is complex, and is therefore not a common feature of APIs for hydrological data.</p><p>We demonstrate an approach to extracting datasets based on river connectivity using a digital river network for the UK, converted to a directed graph, and the python networkX package. This approach enables very rapid identification of upstream and downstream reaches and features for sites of interest, with speeds suitable for on-the-fly analysis. We describe how such an approach could be deployed within an API for data discovery and data retrieval, and demonstrate linking data availability information, capturing observed properties and time series metadata, from large sensor networks, in a JSON-LD format based on concepts drawn from SSN/SOSA and INSPIRE EMF. This approach has been applied to identify up- and downstream water quality monitoring sites for lakes within the UK Lakes Database for nutrient retention analysis, and production of hierarchical datasets of river flow gauging stations to aide network understanding.</p>


1993 ◽  
Vol 28 (7) ◽  
pp. 197-201 ◽  
Author(s):  
Dunchun Wang ◽  
Isao Somiya ◽  
Shigeo Fujii

To understand the algae migration characteristics in the fresh water red tide, we performed a field survey in the Shorenji Reservoir located in Nabari City, Japan. From the analysis of the field data, it is found that the patterns of vertical distributions of the indices representing biomass are very different in the morning and the afternoon. Since some water quality indices have reverse fluctuations between the surface and the bottom layer in respect of the time series changes and the total biomass of the vertical water column is relatively constant, it is concluded that vertical and daily biomass variation of red tide alga is caused by its daily migration, that is the movement from the bottom layer to the surface in the morning and the reverse movement in the afternoon.


Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 86
Author(s):  
Angeliki Mentzafou ◽  
George Varlas ◽  
Anastasios Papadopoulos ◽  
Georgios Poulis ◽  
Elias Dimitriou

Water resources, especially riverine ecosystems, are globally under qualitative and quantitative degradation due to human-imposed pressures. High-temporal-resolution data obtained from automatic stations can provide insights into the processes that link catchment hydrology and streamwater chemistry. The scope of this paper was to investigate the statistical behavior of high-frequency measurements at sites with known hydromorphological and pollution pressures. For this purpose, hourly time series of water levels and key water quality indicators (temperature, electric conductivity, and dissolved oxygen concentrations) collected from four automatic monitoring stations under different hydromorphological conditions and pollution pressures were statistically elaborated. Based on the results, the hydromorphological conditions and pollution pressures of each station were confirmed to be reflected in the results of the statistical analysis performed. It was proven that the comparative use of the statistics and patterns of the water level and quality high-frequency time series could be used in the interpretation of the current site status as well as allowing the detection of possible changes. This approach can be used as a tool for the definition of thresholds, and will contribute to the design of management and restoration measures for the most impacted areas.


2021 ◽  
Vol 275 ◽  
pp. 116651
Author(s):  
Xinchen He ◽  
Hua Wang ◽  
Wei Zhuang ◽  
Dongfang Liang ◽  
Yanhui Ao

Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 316
Author(s):  
Andy Banegas-Medina ◽  
Isis-Yelena Montes ◽  
Ourania Tzoraki ◽  
Luc Brendonck ◽  
Tom Pinceel ◽  
...  

Intermittent rivers and ephemeral streams (IRES) are increasingly studied because of their often-unique aquatic and terrestrial biodiversity, biogeochemical processes and associated ecosystem services. This study is the first to examine the hydrological, physicochemical and taxonomic variability during the dry-wet transition of an intermittent river in the Chilean Mediterranean Zone. Based on 30-years of river monitoring data and the TREHS tool, the hydrology of the river was characterised. Overall, the river shows a significant reduction in streamflow (−0.031 m3/s per year) and a substantial increase of zero flow days (+3.5 days per year). During the transition of hydrological states, variations were observed in the environmental conditions and invertebrate communities. During the drying phase, abundance, richness, and diversity were highest, while species turn-over was highest during base flow conditions. The disconnected pools and the flow resumption phases were characterised by high proportions of lentic taxa and non-insects, such as the endemic species of bivalves, gastropods, and crustaceans, highlighting the relevance of disconnected pools as refuges. Future climatic change scenarios are expected to impact further the hydrology of IRES, which could result in the loss of biodiversity. Biomonitoring and conservation programmes should acknowledge these important ecosystems.


2011 ◽  
Vol 37 (4) ◽  
pp. 629-635 ◽  
Author(s):  
István Gábor Hatvani ◽  
József Kovács ◽  
Ilona Székely Kovács ◽  
Pál Jakusch ◽  
János Korponai

2021 ◽  
Author(s):  
Stefan Krause ◽  

<p>It is probably hard to overestimate the significance of the River Ganges for its spiritual, cultural and religious importance. As the worlds’ most populated river basin and a major water resource for the 400 million people inhabiting its catchment, the Ganges represents one of the most complex and stressed river systems globally. This makes the understanding and management of its water quality an act of humanitarian and geopolitical relevance. Water quality along the Ganges is critically impacted by multiple stressors, including agricultural, industrial and domestic pollution inputs, a lack and failure of water and sanitation infrastructure, increasing water demands in areas of intense population growth and migration, as well as the severe implications of land use and climate change. Some aspects of water pollution are readily visualised as the river network evolves, whilst others contribute to an invisible water crisis (Worldbank, 2019) that affects the life and health of hundreds of millions of people.</p><p>We report the findings of a large collaborative study to monitor the evolution of water pollution along the 2500 km length of the Ganges river and its major tributaries that was carried out over a six-week period in Nov/Dec 2019 by three teams of more than 30 international researchers from 10 institutions. Surface water and sediment were sampled from more than 80 locations along the river and analysed for organic contaminants, nutrients, metals, pathogen indicators, microbial activity and diversity as well as microplastics, integrating in-situ fluorescence and UV absorbance optical sensor technologies with laboratory sample preparation and analyses. Water and sediment samples were analysed to identify the co-existence of pollution hotspots, quantify their spatial footprint and identify potential source areas, dilution, connectivity and thus, derive understanding of the interactions between proximal and distal of sources solute and particulate pollutants.</p><p>Our results reveal the co-existence of distinct pollution hotspots for several contaminants that can be linked to population density and land use in the proximity of sampling sites as well as the contributing catchment area. While some pollution hotspots were characterised by increased concentrations of most contaminant groups, several hotspots of specific pollutants (e.g., microplastics) were identified that could be linked to specific cultural and religious activities. Interestingly, the downstream footprint of specific pollution hotspots from contamination sources along the main stem of the Ganges or through major tributaries varied between contaminants, with generally no significant downstream accumulation emerging in water pollution levels, bearing significant implications for the spatial reach and legacy of pollution hotspots. Furthermore, the comparison of the downstream evolution of multi-pollution profiles between surface water and sediment samples support interpretations of the role of in-stream fate and transport processes in comparison to patterns of pollution source zone activations across the channel. In reporting the development of this multi-dimensional pollution dataset, we intend to stimulate a discussion on the usefulness of large river network surveys to better understand the relative contributions, footprints and impacts of variable pollution sources and how this information can be used for integrated approaches in water resources and pollution management.</p>


2021 ◽  
Author(s):  
Junyuan Fei ◽  
Jintao Liu

<p>Highly intermittent rivers are widespread on the Tibetan Plateau and deeply impact the ecological stability and social development downstream. Due to the highly intermittent rivers are small, seasonal variated and heavy cloud covered on the Tibetan Plateau, their distribution location is still unknown at catchment scale currently. To address these challenges, a new method is proposed for extracting the cumulative distribution location of highly intermittent river from Sentinel-1 time series in an alpine catchment on the Tibetan Plateau. The proposed method first determines the proper time scale of extracting highly intermittent river, based on which the statistical features are calculated to amplify the difference between land covers. Subsequently, the synoptic cumulative distribution location is extracted through Random Forest model using the statistical features above as explanatory variables. And the precise result is generated by combining the synoptic result with critical flow accumulation area.  The highly intermittent river segments are derived and assessed in an alpine catchment of Lhasa River Basin. The results show that the the intra-annual time scale is sufficient for highly intermittent river extraction. And the proposed method can extract highly intermittent river cumulative distribution locations with total precision of 0.62, distance error median of 64.03 m, outperforming other existing river extraction method.</p>


Sign in / Sign up

Export Citation Format

Share Document