Suspended sediment and discharge dynamics across multiple spatial and temporal scales in a glaciated alpine environment: the case of the upper Ötztal, Austria

Author(s):  
Lena Katharina Schmidt ◽  
Till Francke ◽  
Theresa Blume ◽  
Johannes Schöber ◽  
Daniel Pfurtscheller ◽  
...  

<p>High alpine areas are affected disproportionately by global warming and are thus found to be in a transient state. This causes accelerating glacial retreat, which can have severe impacts on discharge and potentially sediment dynamics. Possible effects include changes in water quantities and hydrograph timing as well as changing sediment source areas and the associated magnitude and timing of transport capacities. In turn, the resulting changes in water and sediment supplies and timing have the potential to severely impact downstream ecosystems and infrastructure.</p><p>An essential step towards estimating the effects of future changes and developing sustainable management strategies is to quantify the behavior in the past and present. We therefore used the excellent data availability of discharge and suspended sediment concentrations in our study area in the upper Ötztal in Tyrol, Austria, to make such an assessment. We study discharge and suspended sediment concentrations, which have been monitored at three gauges and for a minimum of seven years in the case of the youngest gauge. The resulting nested catchment setup, with catchment sizes ranging between 98 km² and 785 km², allows us to learn about discharge and sediment fluxes and their spatial distribution, thus allowing us to quantify the relative importance of the glaciated areas as compared to the lower-lying catchment areas. It also allows us to study the temporal dynamics, such as the seasonal timing of the peaks and their interannual differences. In turn, the nested catchments allows us to investigate the spatial variability of these temporal dynamics.  </p><p>The results confirm the high specific sediment yields for alpine catchments in the order of 10³ t/km² per year and higher yields in areas with higher glacier cover as well as a very pronounced seasonality.</p>

2013 ◽  
Vol 1 (No. 1) ◽  
pp. 23-31 ◽  
Author(s):  
Bečvář Martin

Sediment is a natural component of riverine environments and its presence in river systems is essential. However, in many ways and many places river systems and the landscape have been strongly affected by human activities which have destroyed naturally balanced sediment supply and sediment transport within catchments. As a consequence a number of severe environmental problems and failures have been identified, in particular the link between sediments and chemicals is crucial and has become a subject of major scientific interest. Sediment load and sediment concentration are therefore highly important variables that may play a key role in environment quality assessment and help to evaluate the extent of potential adverse impacts. This paper introduces a methodology to predict sediment loads and suspended sediment concentrations (SSC) in large European river basins. The methodology was developed within an MSc research study that was conducted in order to improve sediment modelling in the GREAT-ER point source pollution river modelling package. Currently GREAT-ER uses suspended sediment concentration of 15 mg/l for all rivers in Europe which is an obvious oversimplification. The basic principle of the methodology to predict sediment concentration is to estimate annual sediment load at the point of interest and the amount of water that transports it. The amount of transported material is then redistributed in that corresponding water volume (using the flow characteristic) which determines sediment concentrations. Across the continent, 44 river basins belonging to major European rivers were investigated. Suspended sediment concentration data were collected from various European basins in order to obtain observed sediment yields. These were then compared against the traditional empiric sediment yield estimators. Three good approaches for sediment yield prediction were introduced based on the comparison. The three approaches were applied to predict annual sediment yields which were consequently translated into suspended sediment concentrations. SSC were predicted at 47 locations widely distributed around Europe. The verification of the methodology was carried out using data from the Czech Republic. Observed SSC were compared against the predicted ones which validated the methodology for SSC prediction.


2022 ◽  
Author(s):  
Lena Katharina Schmidt ◽  
Till Francke ◽  
Erwin Rottler ◽  
Theresa Blume ◽  
Johannes Schöber ◽  
...  

Abstract. Climatic changes are expected to fundamentally alter discharge and sediment dynamics in glaciated high alpine areas, e.g. through glacier retreat, prolonged snow-free periods and more frequent intense rainfall events in summer. However, how exactly these hydrological changes will affect sediment dynamics is not yet known. In the present study, we aim to pinpoint areas and processes most relevant to recent sediment and discharge dynamics on different spatial and temporal scales in the Ötztal Alpine Region in Tyrol, Austria. Therefore, we analyze observed discharge and relatively long suspended sediment time series of up to 15 years from three gauges in a nested catchment setup. The catchments range from 100 to almost 800 km2 in size with 10 to 30 % glacier cover and span an elevation range of 930 to 3772 m a.s.l.. The investigation of satellite-based snow cover maps, glacier inventories, mass balances and precipitation data complement the analysis. Our results indicate that mean annual specific discharge and suspended sediment fluxes are highest in the most glaciated sub-catchment and both fluxes correlate significantly with annual glacier mass balances. Furthermore, both discharge and suspended sediment loads show a distinct seasonality with low values during winter and high values during summer. However, the spring onset of sediment transport is almost synchronous at the three gauges, contrary to the spring rise in discharge, which occurs earlier further downstream. A spatio-temporal analysis of snow cover evolution indicates that the spring increase in sediment fluxes at all gauges coincides with the onset of snow melt above 2500 m elevation. Zones above this elevation include glacier tongues and recently deglaciated areas, which seem to be crucial for the sediment dynamics in the catchment. Precipitation events in summer were associated with peak sediment concentrations and fluxes, but on average accounted for only 21 % of the annual sediment yields of the years 2011 to 2020. We conclude that glaciers and the areas above 2500 m elevation play a dominant role for discharge and sediment dynamics in the Ötztal area, while precipitation events play a secondary role. Our study extends the scientific knowledge on current hydro-sedimentological changes in glaciated high alpine areas and provides a baseline for investigations on projected future changes in hydro-sedimentological system dynamics.


2018 ◽  
Vol 22 (6) ◽  
pp. 3421-3434 ◽  
Author(s):  
Anna Costa ◽  
Daniela Anghileri ◽  
Peter Molnar

Abstract. We analyse the control of hydroclimatic factors on suspended sediment concentration (SSC) in Alpine catchments by differentiating among the potential contributions of erosion and suspended sediment transport driven by erosive rainfall, defined as liquid precipitation over snow-free surfaces, ice melt from glacierized areas, and snowmelt on hillslopes. We account for the potential impact of hydropower by intercepting sediment fluxes originated in areas diverted to hydropower reservoirs, and by considering the contribution of hydropower releases to SSC. We obtain the hydroclimatic variables from daily gridded datasets of precipitation and temperature, implementing a degree-day model to simulate spatially distributed snow accumulation and snow–ice melt. We estimate hydropower releases by a conceptual approach with a unique virtual reservoir regulated on the basis of a target-volume function, representing normal reservoir operating conditions throughout a hydrological year. An Iterative Input Selection algorithm is used to identify the variables with the highest predictive power for SSC, their explained variance, and characteristic time lags. On this basis, we develop a hydroclimatic multivariate rating curve (HMRC) which accounts for the contributions of the most relevant hydroclimatic input variables mentioned above. We calibrate the HMRC with a gradient-based nonlinear optimization method and we compare its performance with a traditional discharge-based rating curve. We apply the approach in the upper Rhône Basin, a large Swiss Alpine catchment heavily regulated by hydropower. Our results show that the three hydroclimatic processes – erosive rainfall, ice melt, and snowmelt – are significant predictors of mean daily SSC, while hydropower release does not have a significant explanatory power for SSC. The characteristic time lags of the hydroclimatic variables correspond to the typical flow concentration times of the basin. Despite not including discharge, the HMRC performs better than the traditional rating curve in reproducing SSC seasonality, especially during validation at the daily scale. While erosive rainfall determines the daily variability of SSC and extremes, ice melt generates the highest SSC per unit of runoff and represents the largest contribution to total suspended sediment yield. Finally, we show that the HMRC is capable of simulating climate-driven changes in fine sediment dynamics in Alpine catchments. In fact, HMRC can reproduce the changes in SSC in the past 40 years in the Rhône Basin connected to air temperature rise, even though the simulated changes are more gradual than those observed. The approach presented in this paper, based on the analysis of the hydroclimatic control of suspended sediment concentration, allows the exploration of climate-driven changes in fine sediment dynamics in Alpine catchments. The approach can be applied to any Alpine catchment with a pluvio-glacio-nival hydrological regime and adequate hydroclimatic datasets.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3132
Author(s):  
Ahmed Mohsen ◽  
Ferenc Kovács ◽  
Gábor Mezősi ◽  
Tímea Kiss

Downstream of the confluence of rivers, complex hydrological and morphological processes control the flow and sediment transport. This study aimed to analyze the spatio-temporal dynamics of suspended sediment in the confluence area of the Tisza and its main tributary Maros River using Sentinel-2 images and to reveal the correlation between the hydrological parameters and the mixing process through a relatively long period (2015–2021). The surficial suspended sediment dynamism was analyzed by applying K-means unsupervised classification algorithm on 143 images. The percentages of the Tisza (TW) and Maros (MW) waters and their mixture (MIX) were calculated and compared with the hydrological parameters in both rivers. The main results revealed that the areal, lateral, and longitudinal extensions of TW and MIX have a better correlation with the hydrological parameters than the MW. The Pearson correlation matrix revealed that the discharge ratio between the rivers controls the mixing process significantly. Altogether, 11 mixing patterns were identified in the confluence area throughout the studied period. The TW usually dominates the confluence in November and January, MW in June and July, and MIX in August and September. Predictive equations for the areal distribution of the three classes were derived to support future water sampling in the confluence area.


2020 ◽  
Vol 13 (3) ◽  
pp. 1248 ◽  
Author(s):  
Solange Cavalcanti de Melo ◽  
José Coelho de Araújo Filho ◽  
Renata Maria Caminha Mendes de Oliveira Carvalho

RESUMOO conhecimento da análise quantitativa das concentrações de sedimentos em suspensão transportados pelo rio São Francisco bem como sua relação com as vazões é de muita importância, pois pode auxiliar na identificação dos efeitos da intervenção humana e ou ocasionados pelas condições naturais da região. As regiões a jusante dos barramentos no rio São Francisco apresentam como principal consequência a regularização das vazões e a diminuição das concentrações de sedimentos. O objetivo da pesquisa foi determinar as curvas-chave de sedimentos em suspensão (CCS) nas estações fluviométricas instaladas no Baixo São Francisco (BSF) após a barragem de Xingó. Para o estabelecimento dessas curvas foram utilizados dados de vazão e concentração de sedimentos em suspensão, obtidos do sistema Hidroweb no site da Agência Nacional da Água (ANA) no período de 1999 a 2018. Foram obtidas CCS para todo o trecho do BSF as quais apresentaram bons coeficientes de determinação. Na análise dos dados também foi possível perceber que nos últimos anos, desde 2013 houve redução gradativa das vazões disponibilizadas na barragem de Xingó. Consequentemente, houve também a redução gradativa das cargas de sedimentos em suspensão geradas nas estações de Piranhas, Traipu e Propriá, ou seja, os menores valores já registrados no BSF correspondendo as menores séries históricas tanto de vazão como de sedimentos em suspensão.  Keys curves of sediment discharges in suspension in the Lower São Francisco A B S T R A C TThe knowledge of the quantitative analysis of suspended sediment concentrations carried by the São Francisco River as well as its relation with the flows is of great importance, since it can help in the identification of the effects of human intervention and/or caused by the natural conditions of the region. In the downstream regions of the São Francisco riverbanks, the main consequence was the regularization of flow rates and the reduction of sediment concentrations. The objective of the research was to determine the key curves of suspended sediments (CCS) at the fluviometric stations installed in the lower São Francisco river after Xingó dam. For the evaluation, flow data and suspended sediment concentration were used. These data were obtained from the Hidroweb system on the website of the National Water Agency (ANA) from 1999 to 2018. CCS were plotted for all stretches and presented good coefficients of determination (R2). Based on the analysis of the data it was also possible to notice that in recent years, since 2013 there has been a gradual reduction of the flows available in the Xingó dam. Consequently, there was also a gradual reduction of suspended sediment loads generated at the Piranhas, Traipu and Propriá stations, that is, the lowest values already recorded in lower São Francisco, corresponding to the lower historical series of both discharge and suspended sediments.Keywords: dam, flow, sediments 


2013 ◽  
Vol 93 (4) ◽  
pp. 23-40
Author(s):  
Sanja Mustafic ◽  
Predrag Manojlovic ◽  
Predrag Kostic

The paper treats the issue of the suspended sediment load transport in the upper part of the Rasina River Basin, upstream from the "Celije" reservoir during the year of 2010. Measurements of the suspended sediment concentrations were being done at two hydrological profiles Brus and Ravni. Total quantity of the suspended sediment load that was transported at the profile of Brus in 2010 amounted to 3,437.3 t, which gave the specific transport of 16.4 t/km2/year. At the downstream profile of Ravni, 43,165 t of the suspended sediment load was transported, that is, 95.7 t/km2/year. The basin on the whole is characterized by the existence of two seasons, which by their characteristics in the load transport represent the extreme variants. During the winter-spring season, 74-85.8 % of the total annual load was transported, ?nd during the summer-autumn season between 14.2 and 26 %.


Author(s):  
W. D. Erskine ◽  
M. J. Saynor ◽  
K. Turner ◽  
T. Whiteside ◽  
J. Boyden ◽  
...  

Abstract. Soil erosion rates on plots of waste rock at Ranger uranium mine and basin sediment yields have been measured for over 30 years in Magela Creek in northern Australia. Soil erosion rates on chlorite schist waste rock are higher than for mica schist and weathering is also much faster. Sediment yields are low but are further reduced by sediment trapping effects of flood plains, floodouts, billabongs and extensive wetlands. Suspended sediment yields exceed bedload yields in this deeply weathered, tropical landscape, but the amount of sand transported greatly exceeds that of silt and clay. Nevertheless, sand is totally stored above the topographic base level. Longitudinal continuity of sediment transport is not maintained. As a result, suspended sediment and bedload do not move progressively from the summit to the sea along Magela Creek and lower Magela Creek wetlands trap about 90.5% of the total sediment load input.


Sign in / Sign up

Export Citation Format

Share Document