Comparison Between POLDER/PARASOL and CERES/AQUA Shortwave Fluxes

Author(s):  
Simonne Guilbert ◽  
Frédéric Parol ◽  
Céline Cornet ◽  
Nicolas Ferlay ◽  
François Thieuleux

<p>Radiative Budget, essential to the monitoring of climate change, can be investigated with ERB-dedicated instruments like the Clouds and the Earth Radiant Energy System (CERES) instrument (Wielicki, 1996). On the other side, non-dedicated instruments, such as POLDER-3/PARASOL measuring narrowband radiances, can also be used advantageously to obtain shortwave albedos and fluxes (Buriez et al, 2007; Viollier et al, 2002).</p><p>We present here a comparison between the shortwave fluxes and albedos derived from POLDER-3 and those derived from CERES flying aboard Aqua, chosen as a reference.</p><p>Monthly means of shortwave fluxes computed from the measurements of the two instruments are first set side by side. They show a good agreement in the all-sky case. However, after December 2009, the values from POLDER-3 display a slight drift which coincides with the lowering of the orbit of the PARASOL satellite and the modification of its overpass time in comparison to the other satellites of the A-Train mission. In clear sky situations, greater differences between POLDER and CERES shortwave fluxes are observed, especially over land regions, and the drift increases faster after 2009.</p><p>A second comparison is presented, between instantaneous albedos. For the period of coincident observations between POLDER-3 and CERES/Aqua, there is a good correlation between both products. This correlation deteriorates when the comparison is extended after 2009, as the values given by POLDER-3 increase. This result is expected, as the albedo is a function of the Solar Zenith Angle.</p><p>The slope of the increase of instantaneous albedo values is higher than for the diurnally extrapolated, monthly averaged shortwave fluxes. This tends to show that the POLDER algorithm leading to the monthly means of diurnal shortwave albedos moderates the increase of instantaneous shortwave albedo values but it doesn’t completely compensate for the effects of the drift of the instrument.</p><p> </p>

2005 ◽  
Vol 22 (2) ◽  
pp. 146-164 ◽  
Author(s):  
Seiji Kato ◽  
Fred G. Rose ◽  
Thomas P. Charlock

Abstract The respective errors caused by the gamma-weighted two-stream approximation and the effective thickness approximation for computing the domain-averaged broadband shortwave irradiance are evaluated using cloud optical thicknesses derived from 1 h of radiance measurements by the Moderate Resolution Imaging Spectrometer (MODIS) over footprints of Clouds and the Earth’s Radiant Energy System (CERES) instruments. Domains are CERES footprints of which dimension varies approximately from 20 to 70 km, depending on the viewing zenith angle of the instruments. The average error in the top-of-atmosphere irradiance at a 30° solar zenith angle caused by the gamma-weighted two-stream approximation is 6.1 W m−2 (0.005 albedo bias) with a one-layer overcast cloud where a positive value indicates an overestimate by the approximation compared with the irradiance computed using the independent column approximation. Approximately one-half of the error is due to deviations of optical thickness distributions from a gamma distribution and the other half of the error is due to other approximations in the model. The error increases to 14.7 W m−2 (0.012 albedo bias) when the computational layer dividing the cloud layer is increased to four. The increase is because of difficulties in treating the correlation of cloud properties in the vertical direction. Because the optical thickness under partly cloudy conditions, which contribute two-thirds of cloudy footprints, is smaller, the error is smaller than under overcast conditions; the average error for partly cloudy condition is −2.4 W m−2 (−0.002 albedo bias) at a 30° solar zenith angle. The corresponding average error caused by the effective thickness approximation is 0.5 W m−2 for overcast conditions and −21.5 W m−2 (−0.018 albedo bias) for partly cloudy conditions. Although the error caused by the effective thickness approximation depends strongly on the optical thickness, its average error under overcast conditions is smaller than the error caused by the gamma-weighted two-stream approximation because the errors at small and large optical thicknesses cancel each other. Based on these error analyses, the daily average error caused by the gamma-weighted two-stream and effective thickness approximations is less than 2 W m−2.


2010 ◽  
Vol 23 (6) ◽  
pp. 1277-1290 ◽  
Author(s):  
John E. Harries ◽  
Claudio Belotti

Abstract Recent observations and model studies of the earth’s radiative energy balance have focused attention on the earth’s top of atmosphere (TOA) energy balance. This is the balance between the shortwave energy absorbed by the earth, which is represented by a spatially and temporally averaged absorbed flux , and the emitted longwave energy, which is represented by the corresponding averaged emitted flux . The TOA average net flux FN is defined as the difference between the two over the averaged area and time, which may be a local, regional, or global average. A global nonzero net flux represents a measure of imbalance between the energy being absorbed and emitted by the earth for the time interval in question. It is of interest to ask what the natural variability of the net flux might be and whether, during times of climate change, signals of important climate change processes might be detected against this natural background variation; examples of these signals include evidence of ocean heat storage, the effects of El Niño, and the radiative effects of volcanic eruptions. In this paper, the authors review the significance of the net flux, survey the observational evidence from a range of satellite instruments over several decades, and analyze some of the most recent observations from the Clouds and the Earth’s Radiant Energy System (CERES) program to determine what signals and what natural variability might be expected in the TOA net flux. Based on this analysis, the use of broadband radiation measurements for global climate change studies can be assessed.


2020 ◽  
Vol 80 (2) ◽  
pp. 147-163
Author(s):  
X Liu ◽  
Y Kang ◽  
Q Liu ◽  
Z Guo ◽  
Y Chen ◽  
...  

The regional climate model RegCM version 4.6, developed by the European Centre for Medium-Range Weather Forecasts Reanalysis, was used to simulate the radiation budget over China. Clouds and the Earth’s Radiant Energy System (CERES) satellite data were utilized to evaluate the simulation results based on 4 radiative components: net shortwave (NSW) radiation at the surface of the earth and top of the atmosphere (TOA) under all-sky and clear-sky conditions. The performance of the model for low-value areas of NSW was superior to that for high-value areas. NSW at the surface and TOA under all-sky conditions was significantly underestimated; the spatial distribution of the bias was negative in the north and positive in the south, bounded by 25°N for the annual and seasonal averaged difference maps. Compared with the all-sky condition, the simulation effect under clear-sky conditions was significantly better, which indicates that the cloud fraction is the key factor affecting the accuracy of the simulation. In particular, the bias of the TOA NSW under the clear-sky condition was <±10 W m-2 in the eastern areas. The performance of the model was better over the eastern monsoon region in winter and autumn for surface NSW under clear-sky conditions, which may be related to different levels of air pollution during each season. Among the 3 areas, the regional average biases overall were largest (negative) over the Qinghai-Tibet alpine region and smallest over the eastern monsoon region.


2019 ◽  
Vol 36 (4) ◽  
pp. 717-732 ◽  
Author(s):  
F. Tornow ◽  
C. Domenech ◽  
J. Fischer

AbstractWe have investigated whether differences across Clouds and the Earth’s Radiant Energy System (CERES) top-of-atmosphere (TOA) clear-sky angular distribution models, estimated separately over regional (1° × 1° longitude–latitude) and temporal (monthly) bins above land, can be explained by geophysical parameters from Max Planck Institute Aerosol Climatology, version 1 (MAC-v1), ECMWF twentieth-century reanalysis (ERA-20C), and a MODIS bidirectional reflectance distribution function (BRDF)/albedo/nadir BRDF-adjusted reflectance (NBAR) Climate Modeling Grid (CMG) gap-filled products (MCD43GF) climatology. Our research aimed to dissolve binning and to isolate inherent properties or indicators of such properties, which govern the TOA radiance-to-flux conversion in the absence of clouds. We collocated over seven million clear-sky footprints from CERES Single Scanner Footprint (SSF), edition 4, data with above geophysical auxiliary data. Looking at data per surface type and per scattering direction—as perceived by the broadband radiometer (BBR) on board Earth Clouds, Aerosol and Radiation Explorer (EarthCARE)—we identified optimal subsets of geophysical parameters using two different methods: random forest regression followed by a permutation test and multiple linear regression combined with the genetic algorithm. Using optimal subsets, we then trained artificial neural networks (ANNs). Flux error standard deviations on unseen test data were on average 2.7–4.0 W m−2, well below the 10 W m−2 flux accuracy threshold defined for the mission, with the exception of footprints containing fresh snow. Dynamic surface types (i.e., fresh snow and sea ice) required simpler ANN input sets to guarantee mission-worthy flux estimates, especially over footprints consisting of several surface types.


2012 ◽  
Vol 29 (3) ◽  
pp. 375-381 ◽  
Author(s):  
Xianglei Huang ◽  
Norman G. Loeb ◽  
Huiwen Chuang

Abstract Clouds and the Earth’s Radiant Energy System (CERES) daytime longwave (LW) radiances are determined from the difference between a total (TOT) channel (0.3–200 μm) measurement and a shortwave (SW) channel (0.3–5 μm) measurement, while nighttime LW radiances are obtained directly from the TOT channel. This means that a drift in the SW channel or the SW portion of the TOT channel could impact the daytime longwave radiances, but not the nighttime ones. This study evaluates daytime and nighttime CERES LW radiances for a possible secular drift in CERES LW observations using spectral radiances observed by Atmospheric Infrared Sounder (AIRS). By examining the coincidental AIRS and CERES Flight Model 3 (FM3) measurements over the tropical clear-sky oceans for all of January and July months since 2005, a secular drift of about −0.11% yr−1 in the daytime CERES-FM3 longwave unfiltered radiance can be identified in the CERES Single Scanner Footprint (SSF) Edition 2 product. This provides an upper-bound estimation for the drift in daytime outgoing longwave radiation, which is approximately −0.323 W m−2 yr−1. This estimation is consistent with the independent assessment concluded by the CERES calibration team. Such secular drift has been greatly reduced in the latest CERES SSF Edition 3 product. Comparisons are conducted for the CERES window channel as well, and it shows essentially no drift. This study serves as a practical example illustrating how the measurements of spectrally resolved radiances can be used to help evaluate data products from other narrowband or broadband measurements.


2005 ◽  
Vol 18 (17) ◽  
pp. 3506-3526 ◽  
Author(s):  
Norman G. Loeb ◽  
Natividad Manalo-Smith

Abstract The direct radiative effect of aerosols (DREA) is defined as the difference between radiative fluxes in the absence and presence of aerosols. In this study, the direct radiative effect of aerosols is estimated for 46 months (March 2000–December 2003) of merged Clouds and the Earth’s Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) Terra global measurements over ocean. This analysis includes the contribution from clear regions in both clear and partly cloudy CERES footprints. MODIS–CERES narrow-to-broadband regressions are developed to convert clear-sky MODIS narrowband radiances to broadband shortwave (SW) radiances, and CERES clear-sky angular distribution models (ADMs) are used to estimate the corresponding top-of-atmosphere (TOA) radiative fluxes that are needed to determine the DREA. Clear-sky MODIS pixels are identified using two independent cloud masks: (i) the NOAA/National Environmental Satellite, Data, and Information Service (NESDIS) algorithm that is used for inferring aerosol properties from MODIS on the CERES Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product (NOAA SSF); and (ii) the standard algorithm that is used by the MODIS aerosol group to produce the MODIS aerosol product (MOD04). Over global oceans, direct radiative cooling by aerosols for clear scenes that are identified from MOD04 is estimated to be 40% larger than for clear scenes from NOAA SSF (5.5 compared to 3.8 W m−2). Regionally, differences are largest in areas that are affected by dust aerosol, such as oceanic regions that are adjacent to the Sahara and Saudi Arabian deserts, and in northern Pacific Ocean regions that are influenced by dust transported from Asia. The net total-sky (clear and cloudy) DREA is negative (cooling) and is estimated to be −2.0 W m−2 from MOD04, and −1.6 W m−2 from NOAA SSF. The DREA is shown to have pronounced seasonal cycles in the Northern Hemisphere and large year-to-year fluctuations near deserts. However, no systematic trend in deseasonalized anomalies of the DREA is observed over the 46-month time series that is considered.


2018 ◽  
Vol 31 (2) ◽  
pp. 895-918 ◽  
Author(s):  
Norman G. Loeb ◽  
David R. Doelling ◽  
Hailan Wang ◽  
Wenying Su ◽  
Cathy Nguyen ◽  
...  

The Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA), Edition 4.0 (Ed4.0), data product is described. EBAF Ed4.0 is an update to EBAF Ed2.8, incorporating all of the Ed4.0 suite of CERES data product algorithm improvements and consistent input datasets throughout the record. A one-time adjustment to shortwave (SW) and longwave (LW) TOA fluxes is made to ensure that global mean net TOA flux for July 2005–June 2015 is consistent with the in situ value of 0.71 W m−2. While global mean all-sky TOA flux differences between Ed4.0 and Ed2.8 are within 0.5 W m−2, appreciable SW regional differences occur over marine stratocumulus and snow/sea ice regions. Marked regional differences in SW clear-sky TOA flux occur in polar regions and dust areas over ocean. Clear-sky LW TOA fluxes in EBAF Ed4.0 exceed Ed2.8 in regions of persistent high cloud cover. Owing to substantial differences in global mean clear-sky TOA fluxes, the net cloud radiative effect in EBAF Ed4.0 is −18 W m−2 compared to −21 W m−2 in EBAF Ed2.8. The overall uncertainty in 1° × 1° latitude–longitude regional monthly all-sky TOA flux is estimated to be 3 W m−2 [one standard deviation (1 σ)] for the Terra-only period and 2.5 W m−2 for the Terra– Aqua period both for SW and LW fluxes. The SW clear-sky regional monthly flux uncertainty is estimated to be 6 W m−2 for the Terra-only period and 5 W m−2 for the Terra– Aqua period. The LW clear-sky regional monthly flux uncertainty is 5 W m−2 for Terra only and 4.5 W m−2 for Terra– Aqua.


2019 ◽  
Author(s):  
Wenying Su ◽  
Patrick Minnis ◽  
Lusheng Liang ◽  
David P. Duda ◽  
Konstantin Khlopenkov ◽  
...  

Abstract. The National Institute of Standards and Technology Advanced Radiometer (NISTAR) onboard Deep Space Climate Observatory (DSCOVR) provides continuous full disc global broadband irradiance measurements over most of the sunlit side of the Earth. The three active cavity radiometers measures the total radiant energy from the sun-lit side of the Earth in shortwave (SW, 0.2–4 µm), total (0.4–100 µm), and near-infrared (NIR, 0.7–4 µm) channels. The Level 1 NISTAR dataset provides the filtered radiances (the ratio between irradiance and solid angle). To determine the daytime top-of-atmosphere (TOA) shortwave and longwave radiative fluxes, the NISTAR measured shortwave radiances must be unfiltered first. An unfiltering algorithm was developed for the NISTAR SW and NIR channels using a spectral radiance data base calculated for typical Earth scenes. The resulting unfiltered NISTAR radiances are then converted to full disk daytime SW and LW flux, by accounting for the anisotropic characteristics of the Earth-reflected and emitted radiances. The anisotropy factors are determined using scene identifications determined from multiple low Earth orbit and geostationary satellites and the angular distribution models (ADMs) developed using data collected by the Clouds and the Earth's Radiant Energy System (CERES). Global annual daytime mean SW fluxes from NISTAR are about 6 % greater than those from CERES, and both show strong diurnal variations with daily maximum-minimum differences as great as 20 Wm−2 depending on the conditions of the sunlit portion of the Earth. They are also highly correlated, having correlation coefficients of 0.89, indicating that they both capture the diurnal variation. Global annual daytime mean LW fluxes from NISTAR are about 3 % greater than those from CERES, but the correlation between them is only about 0.38.


2021 ◽  
Author(s):  
Babak Jahani ◽  
Hendrik Andersen ◽  
Josep Calbó ◽  
Josep-Abel González ◽  
Jan Cermak

Abstract. This study presents an approach for quantification of cloud-aerosol transition zone broadband longwave radiative effects at the top of the atmosphere (TOA) during daytime over the ocean, based on satellite observations and radiative transfer simulation. Specifically, we used several products from MODIS (Moderate Resolution Imaging Spectroradiometer) and CERES (Clouds and the Earth’s Radiant Energy System) sensors for identification and selection of CERES footprints with horizontally homogeneous transition zone and clear-sky conditions. For the selected transition zone footprints, radiative effect was calculated as the difference between the instantaneous CERES TOA upwelling broadband longwave radiance observations and corresponding clear-sky radiance simulations. The clear-sky radiances were simulated using the Santa Barbara DISORT Atmospheric Radiative Transfer model fed by the hourly ERA5 reanalysis (fifth generation ECMWF reanalysis) atmospheric and surface data. The CERES radiance observations corresponding to the clear-sky footprints detected were also used for validating the simulated clear-sky radiances. We tested this approach using the radiative measurements made by the MODIS and CERES instruments onboard Aqua platform over the south-eastern Atlantic Ocean during August 2010. For the studied period and domain, transition zone radiative effect (given in flux units) is on average equal to 8.0 ± 3.7 W m−2 (heating effect; median: 5.4 W m−2), although cases with radiative effects as large as 50 W m−2 were found.


Sign in / Sign up

Export Citation Format

Share Document