Plant-soil interactions can enhance earth barrier systems in urban spaces 

Author(s):  
David Boldrin ◽  
Anthony Glyn Bengough ◽  
Jonathan Knappett ◽  
Kenneth Loades ◽  
Anthony Kwan Leung

<p>Climate change is expected to introduce increasing threats to human health and the urban built environment, due to extreme events such as heavy precipitation. In the urban environment, impermeable hard-engineered surfaces may exacerbate climate change effects and increase the risk of floods. Adaptation solutions are essential to limit the climate change impacts on the urban environment. Research is needed to design new environmentally friendly multi-layer earthen barrier systems that can mimic the natural hydrological processes (e.g., plant-soil interaction) removed by urbanization.</p><p>In this study, potential barrier materials were selected from both natural soils and recycled waste materials (e.g., recycled concrete aggregates). Contrasting herbaceous species (legumes, grasses and forbs) were selected and grown for five months in compacted soil columns and saturated hydraulic conductivity (<em>K</em><sub>sat</sub>) was tested for each soil column. Following <em>K</em><sub>sat</sub> tests, all soil columns were saturated and left for evapo-transpiration. Plant water uptake, matric suction and soil strength (penetration resistance) were measured.</p><p>Among the materials tested in this study, recycled concrete aggregate (RCA) was the most suitable material for the barrier drainage layer, having a <em>K</em><sub>sat</sub> equal to natural gravel, but with 14% lower dry density (2.3 Mg/m<sup>3</sup>) and seven-fold greater water holding capacity (0.08 g/g). However, a portion of the water stored in the RCA was strongly bound to micropores and not available for plants. Plant growth in soil columns increased <em>K</em><sub>sat</sub>. On average <em>K</em><sub>sat</sub> of four-month old vegetated soil (3.2e<sup>-5</sup> ± 2.0e<sup>-6</sup> m/s) was four times larger than that of control fallow soil (6.9e<sup>-6</sup> ± 1.4e<sup>-6</sup> m/s). However, tested species differed in their effect on <em>K</em><sub>sat</sub>, ranging from 9.9e<sup>-6</sup> ± 1.3e<sup>-6</sup> m/s of <em>Festuca ovina</em> (Grass) to 4.1e<sup>-5</sup> ± 3.7e<sup>-6</sup> of <em>Lotus pedunculatus</em> (Legume). In the fallow soil, daily evaporation led to an average water loss of 0.49 ± 0.04 g per 100 g of soil, evapo-transpiration led to a daily water loss up to 2.58 ± 0.10 g per 100 g of soil in<em> Lotus corniculatus</em> columns. Thus, soil drying and induced matric suction strengthened the vegetated soil and further increased its ability to store water. For instance, soil vegetated with <em>L. corniculatus</em> had seven times faster water absorption and twenty-five times greater strength compared with control fallow soil. Plants affected the hydraulic conductivity and water relation of the barrier system. Root systems can increase soil hydraulic conductivity through root-induced channels. This may enable faster drainage during floods, but we found large differences between species. Transpiration restored the water holding capacity of barrier systems after heavy rain events and induced strengthening of soil.</p><p>We suggest that vegetation should not be simply selected for aesthetically “greening” the barrier system, but specifically selected for its role in improving soil engineering function. There is a substantial scope to choose species to manipulate hydrological properties of the barrier system and improve its performance during extreme climate events.</p>

Author(s):  
Oksana Sadkovskaya

One of major factors of deterioration in a microclimate of urban development in the conditions of the Rostov region, is degradation of landscapes owing to violation of water balance of the territory. In article the main reasons for violation of water balance which included natural features of the region, a consequence of anthropogenic influence, climatic changes, etc. are considered. Examples from the world practice of urban planning, which show the relevance and effectiveness of compensation for the effects of anthropogenic im-pacts and climate change using planning methods, are given. The experience of the United States, the Nether-lands, Canada and other countries that use water-saving technologies in planning is considered. The rela-tionship of urban planning and the formation of sustainable urban landscapes is shown. The integration of water-saving technologies into the urban environment can be a means of optimizing landscapes and a means of creating unique urban spaces. Reclamation of the urban landscape of low-rise buildings is a necessary step in creating a modern and comfortable urban environment in the conditions of the Rostov region. Meth-ods are proposed to compensate for negative changes in urban landscapes that can be applied at the stage of urban planning. As well as the proposed methods can be applied in the reconstruction of urban low-rise buildings. The considered methods concern not only urban landscapes, but also agricultural landscapes that surround small and medium-sized cities of the Rostov region. In article the author's concept of the organiza-tion of the low housing estate on a basis Urban- facies is submitted. Planning methods of regulation of water balance of the territory on the basis of models the ecological protective of landscapes are offered: an ecolog-ical core, an ecological corridor and an ecological barrier and also analogs from town-planning practice are considered. The reclamation of urban landscapes based on urban planning methods for regulating the water balance of the territory will allow creating unique urban spaces that are resistant to local climatic conditions and the possible consequences of climate change.


2021 ◽  
Vol 53 (1) ◽  
pp. 135-148
Author(s):  
Christopher J. Ellis ◽  
Sally Eaton

AbstractThere is growing evidence that species and communities are responding to, and will continue to be affected by, climate change. For species at risk, vulnerability can be reduced by ensuring that their habitat is extensive, connected and provides opportunities for dispersal and/or gene flow, facilitating a biological response through migration or adaptation. For woodland epiphytes, vulnerability might also be reduced by ensuring sufficient habitat heterogeneity, so that microhabitats provide suitable local microclimates, even as the larger scale climate continues to change (i.e. microrefugia). This study used fuzzy set ordination to compare bryophyte and lichen epiphyte community composition to a large-scale gradient from an oceanic to a relatively more continental macroclimate. The residuals from this relationship identified microhabitats in which species composition reflected a climate that was more oceanic or more continental than would be expected given the prevailing macroclimate. Comparing these residuals to features that operate at different scales to create the microclimate (landscape, stand and tree-scale), it was possible to identify how one might engineer microrefugia into existing or new woodland, in order to reduce epiphyte vulnerability to climate change. Multimodel inference was used to identify the most important features for consideration, which included local effects such as height on the bole, angle of bole lean and bark water holding capacity, as well as tree species and tree age, and within the landscape, topographic wetness and physical exposure.


2020 ◽  
Vol 456 (1-2) ◽  
pp. 81-98
Author(s):  
Marcus Schlingmann ◽  
Ursina Tobler ◽  
Bernd Berauer ◽  
Noelia Garcia-Franco ◽  
Peter Wilfahrt ◽  
...  

Abstract Aims Consequences of climate change and land use intensification on the nitrogen (N) cycle of organic-matter rich grassland soils in the alpine region remain poorly understood. We aimed to identify fates of fertilizer N and to determine the overall N balance of an organic-matter rich grassland in the European alpine region as influenced by intensified management and warming. Methods We combined 15N cattle slurry labelling with a space for time climate change experiment, which was based on translocation of intact plant-soil mesocosms down an elevational gradient to induce warming of +1 °C and + 3 °C. Mesocosms were subject to either extensive or intensive management. The fate of slurry-N was traced in the plant-soil system. Results Grassland productivity was very high (8.2 t - 19.4 t dm ha−1 yr−1), recovery of slurry 15N in mowed plant biomass was, however, low (9.6–14.7%), illustrating low fertilizer N use efficiency and high supply of plant available N via mineralization of soil organic matter (SOM). Higher 15N recovery rates (20.2–31.8%) were found in the soil N pool, dominated by recovery in unextractable N. Total 15N recovery was approximately half of the applied tracer, indicating substantial loss to the environment. Overall, high N export by harvest (107–360 kg N ha−1 yr−1) markedly exceeded N inputs, leading to a negative grassland N balance. Conclusions Here provided results suggests a risk of soil N mining in montane grasslands, which increases both under climate change and land use intensification.


Author(s):  
Alain Deloire ◽  
Suzy Rogiers ◽  
Katja Šuklje ◽  
Guillaume Antalick ◽  
Xiao Zeyu ◽  
...  

Late ripening berry dehydration is an important phenomenon that occurs through grape berry water loss due to the alteration of the fruit water budget when transpiration and potential water back flow to the plant exceed the import of water into the berry through the phloem and xylem. Berry shrivelling can have a significant economic impact, reducing yields by ≥25 % with consequences on berry composition and the resulting wine. Its occurrence and consequences are expected to increase due to predicted climate change, shifting grape development and ripening into warmer periods (i.e., heat waves and drought events).


2006 ◽  
Vol 22 (3) ◽  
pp. 507-514 ◽  
Author(s):  
Zhongkui Luo ◽  
Osbert J. Sun ◽  
Quansheng Ge ◽  
Wenting Xu ◽  
Jingyun Zheng

2011 ◽  
Vol 2011 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Ola Haug ◽  
Xeni K. Dimakos ◽  
Jofrid F. Vårdal ◽  
Magne Aldrin ◽  
Elisabeth Meze-Hausken
Keyword(s):  

2020 ◽  
Vol 12 (10) ◽  
pp. 4247 ◽  
Author(s):  
Francesco Ferrini ◽  
Alessio Fini ◽  
Jacopo Mori ◽  
Antonella Gori

It is known that the urban environment amplifies the effects of climate change, sometimes with disastrous consequences that put people at risk. These aspects can be affected by urban vegetation and planting design but, while there are thousands of papers related to the effects of climate change, a relatively limited number of them are directly aimed at investigating the role of vegetation as a mitigating factor in the urban context. This paper focuses on reviewing the research on the role of urban vegetation in alleviating the adverse conditions of the urban environment in order to provide some practical guidelines to be applied by city planners. Through an analysis of the documents found in Scopus, Web of Science, and Google Scholar using urban vegetation and climate change-related keywords we selected five major issues related to the urban environment: (1) particulate matter, (2) gaseous pollution, (3) noise pollution, (4) water runoff, (5) urban heat island effect. The analysis of existing knowledge reported here indicates that the roles of urban vegetation on the adverse effect of climate change could not be simply deemed positive or negative, because the role of urban green is also strongly linked to the structure, composition, and distribution of vegetation, as well as to the criteria used for management. Therefore, it could help to better understand the roles of urban green as a complex system and provide the foundation for future studies.


2016 ◽  
Vol 66 ◽  
pp. 310-313 ◽  
Author(s):  
Meghan Doherty ◽  
Kelly Klima ◽  
Jessica J. Hellmann

Sign in / Sign up

Export Citation Format

Share Document