First Doppler lidar and cloud radar measurements of orographic convection initiation from a mountain observatory in the Al Hajar Mountains of the United Arab Emirates.

Author(s):  
Oliver Branch ◽  
Andreas Behrendt ◽  
Osama Alnayef ◽  
Florian Späth ◽  
Thomas Schwitalla ◽  
...  

<p>We present exciting Doppler lidar and cloud radar measurements from a high-vantage mountain observatory in the hyper-arid United Arab Emirates (UAE) - initiated as part of the UAE Research Program for Rain Enhancement Science (UAEREP). The observatory was designed to study the clear-air pre-convective environment and subsequent convective events in the arid Al Hajar Mountains, with the overarching goal of improving understanding and nowcasting of seedable orographic clouds. During summer in the Al Hajar Mountains (June to September), weather processes are often complex, with summer convection being initiated by several phenomena acting in concert, e.g., interaction between sea breeze and horizontal convective rolls. These interactions can combine to initiate sporadic convective storms and these can be intense enough to cause flash floods and erosion. Such events here are influenced by mesoscale phenomena like the low-level jet and local sea breeze, and are constrained by larger-scale synoptic conditions.</p><p>The Doppler lidar and cloud radar were employed for approximately two years at a high vantage-point to capture valley wind flows and observe convective cells. The instruments were configured to run synchronized polar (PPI) scans at 0°, 5°, and 45° elevation angles and vertical cross-section (RHI) scans at 0°, 30°, 60, 90°, 120°, and 150° azimuth angles. Using this imagery, along with local C-band radar and satellite data, we were able to identify and analyze several convective cases. To illustrate our results, we have selected two cases under unstable conditions - the 5 and 6 September 2018. In both cases, we observed areas of low-level convergence/divergence, particularly associated with wind flow around a peak 2 km to the south-west of the observatory. The extension of these deformations are visible in the atmosphere to a height of 3 km above sea level. Subsequently, we observed convective cells developing at those approximate locations – apparently initiated because of these phenomena. The cloud radar images provided detailed observations of cloud structure, evolution, and precipitation. In both convective cases, pre-convective signatures were apparent before CI, in the form of convergence, wind shear structures, and updrafts.</p><p>These results have demonstrated the value of synergetic observations for understanding orographic convection initiation, improvement of forecast models, and cloud seeding guidance. The manuscript based on these results is now the subject of a peer review (Branch et al., 2021).</p><p> </p><p>Branch, O., Behrendt, Andreas Alnayef, O., Späth, F., Schwitalla, Thomas, Temimi, M., Weston, M., Farrah, S., Al Yazeedi, O., Tampi, S., Waal, K. de and Wulfmeyer, V.: The new Mountain Observatory of the Project “Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification (OCAL)” in the United Arab Emirates: First results on Convection Initiation, J. Geophys. Res.  Atmos., 2021. In review (submitted 23.11.2020).</p>

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 868
Author(s):  
Jonathan Durand ◽  
Edouard Lees ◽  
Olivier Bousquet ◽  
Julien Delanoë ◽  
François Bonnardot

In November 2016, a 95 GHz cloud radar was permanently deployed in Reunion Island to investigate the vertical distribution of tropical clouds and monitor the temporal variability of cloudiness in the frame of the pan-European research infrastructure Aerosol, Clouds and Trace gases Research InfraStructure (ACTRIS). In the present study, reflectivity observations collected during the two first years of operation (2016–2018) of this vertically pointing cloud radar are relied upon to investigate the diurnal and seasonal cycle of cloudiness in the northern part of this island. During the wet season (December–March), cloudiness is particularly pronounced between 1–3 km above sea level (with a frequency of cloud occurrence of 45% between 12:00–19:00 LST) and 8–12 km (with a frequency of cloud occurrence of 15% between 14:00–19:00 LST). During the dry season (June–September), this bimodal vertical mode is no longer observed and the vertical cloud extension is essentially limited to a height of 3 km due to both the drop-in humidity resulting from the northward migration of the ITCZ and the capping effect of the trade winds inversion. The frequency of cloud occurrence is at its maximum between 13:00–18:00 LST, with a probability of 35% at 15 LST near an altitude of 2 km. The analysis of global navigation satellite system (GNSS)-derived weather data also shows that the diurnal cycle of low- (1–3 km) and mid-to-high level (5–10 km) clouds is strongly correlated with the diurnal evolution of tropospheric humidity, suggesting that additional moisture is advected towards the island by the sea breeze regime. The detailed analysis of cloudiness observations collected during the four seasons sampled in 2017 and 2018 also shows substantial differences between the two years, possibly associated with a strong positive Indian Ocean Southern Dipole (IOSD) event extending throughout the year 2017.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Hongwei Zhang ◽  
Xiaoying Liu ◽  
Qichao Wang ◽  
Jianjun Zhang ◽  
Zhiqiang He ◽  
...  

Low-level wind shear is usually to be a rapidly changing meteorological phenomenon that cannot be ignored in aviation security service by affecting the air speed of landing and take-off aircrafts. The lidar team in Ocean University of China (OUC) carried out the long term particular researches on the low-level wind shear identification and regional wind shear inducement search at Beijing Capital International Airport (BCIA) from 2015 to 2020 by operating several pulsed coherent Doppler lidar (PCDL) systems. On account of the improved glide path scanning strategy and virtual multiple wind anemometers based on the rang height indicator (RHI) modes, the small-scale meteorological phenomenon along the glide path and/or runway center line direction can be captured. In this paper, the device configuration, scanning strategies, and results of the observation data are proposed. The algorithms to identify the low-level wind shear based on the reconstructed headwind profiles data have been tested and proved based on the lidar data obtained from December 2018 to January 2019. High spatial resolution observation data at vertical direction are utilized to study the regional wind shear inducement at the 36L end of BCIA under strong northwest wind conditions.


2015 ◽  
Vol 28 (20) ◽  
pp. 8093-8108 ◽  
Author(s):  
Cathryn E. Birch ◽  
Malcolm J. Roberts ◽  
Luis Garcia-Carreras ◽  
Duncan Ackerley ◽  
Michael J. Reeder ◽  
...  

Abstract There are some long-established biases in atmospheric models that originate from the representation of tropical convection. Previously, it has been difficult to separate cause and effect because errors are often the result of a number of interacting biases. Recently, researchers have gained the ability to run multiyear global climate model simulations with grid spacings small enough to switch the convective parameterization off, which permits the convection to develop explicitly. There are clear improvements to the initiation of convective storms and the diurnal cycle of rainfall in the convection-permitting simulations, which enables a new process-study approach to model bias identification. In this study, multiyear global atmosphere-only climate simulations with and without convective parameterization are undertaken with the Met Office Unified Model and are analyzed over the Maritime Continent region, where convergence from sea-breeze circulations is key for convection initiation. The analysis shows that, although the simulation with parameterized convection is able to reproduce the key rain-forming sea-breeze circulation, the parameterization is not able to respond realistically to the circulation. A feedback of errors also occurs: the convective parameterization causes rain to fall in the early morning, which cools and wets the boundary layer, reducing the land–sea temperature contrast and weakening the sea breeze. This is, however, an effect of the convective bias, rather than a cause of it. Improvements to how and when convection schemes trigger convection will improve both the timing and location of tropical rainfall and representation of sea-breeze circulations.


2018 ◽  
Vol 146 (1) ◽  
pp. 243-262 ◽  
Author(s):  
J. W. Wilson ◽  
S. B. Trier ◽  
D. W. Reif ◽  
R. D. Roberts ◽  
T. M. Weckwerth

AbstractDuring the Plains Elevated Convection at Night (PECAN) experiment, an isolated hailstorm developed on the western side of the PECAN study area on the night of 3–4 July 2015. One of the objectives of PECAN was to advance knowledge of the processes and conditions leading to pristine nocturnal convection initiation (CI). This nocturnal hailstorm developed more than 160 km from any other convective storms and in the absence of any surface fronts or bores. The storm initiated within 110 km of the S-Pol radar; directly over a vertically pointing Doppler lidar; within 25 km of the University of Wyoming King Air flight track; within a network of nine sounding sites taking 2-hourly soundings; and near a mobile mesonet track. Importantly, even beyond 100 km in range, S-Pol observed the preconvection initiation cloud that was collocated with the satellite infrared cloud image and provided information on the evolution of cloud growth. The multiple observations of cloud base, thermodynamic stability, and direct updraft observations were used to determine that the updraft roots were elevated. Diagnostic analysis presented in the paper suggests that CI was aided by lower-tropospheric gravity waves occurring in an environment of weak but persistent mesoscale lifting.


Author(s):  
Lihua Li ◽  
Stephen M. Sekelsky ◽  
Steven C. Reising ◽  
Calvin T. Swift ◽  
Stephen L. Durden ◽  
...  

Author(s):  
Christopher A. Davis

Abstract The Sierras de Córdoba (SDC) mountain range in Argentina is a hotspot of deep moist convection initiation (CI). Radar climatology indicates that 44% of daytime CI events that occur near the SDC in spring and summer seasons and that are not associated with the passage of a cold front or an outflow boundary involve a northerly LLJ, and these events tend to preferentially occur over the southeast quadrant of the main ridge of the SDC. To investigate the physical mechanisms acting to cause CI, idealized convection-permitting numerical simulations with a horizontal grid spacing of 1 km were conducted using CM1. The sounding used for initializing the model featured a strong northerly LLJ, with synoptic conditions resembling those in a previously postulated conceptual model of CI over the region, making it a canonical case study. Differential heating of the mountain caused by solar insolation in conjunction with the low-level northerly flow sets up a convergence line on the eastern slopes of the SDC. The southern portion of this line experiences significant reduction in convective inhibition, and CI occurs over the SDC southeast quadrant. Thesimulated storm soon acquires supercellular characteristics, as observed. Additional simulations with varying LLJ strength also show CI over the southeast quadrant. A simulation without background flow generated convergence over the ridgeline, with widespread CI across the entire ridgeline. A simulation with mid- and upper-tropospheric westerlies removed indicates that CI is minimally influenced by gravity waves. We conclude that the low-level jet is sufficient to focus convection initiation over the southeast quadrant of the ridge.


Sign in / Sign up

Export Citation Format

Share Document