scholarly journals Reactive transport model of kinetically controlled celestite to barite replacement

Author(s):  
Morgan Tranter ◽  
Maria Wetzel ◽  
Marco De Lucia ◽  
Michael Kühn

<p>Barite formation is of concern for many sustainable utilisations of the geological subsurface, ranging from oil and gas extraction to geothermal reservoirs, and also acts as a scavenger mineral for the retention of radium for nuclear waste disposal. The surface reaction-controlled nature of its formation in these dynamic systems entails a strong sensitivity of the host rock's permeability towards heterogeneities and boundary conditions. The impact of precipitation on effective flow properties can vary by many orders of magnitude as shown by barite scale formation and injectivity loss models for geothermal systems [1], emphasising the need for robust prediction models.</p><p>A relevant example case is the replacement of celestite (SrSO4) with barite (BaSO4), which was investigated for various barite supersaturations with flow-through experiments on the core-scale [2]. Three distinct cases were observed for supersaturations from high to low: (1) quick overgrowth and passivation of soluble celestite grains, (2) partial replacement of celestite with barite, (3) slow moving reaction front with complete mineral replacement. The authors presented heuristic approaches that include linking reactive surface area development to molar fractions to model the results. We provide a comprehensive, full-physics geochemical modelling approach using precipitation and dissolution kinetics as well as nucleation and crystal growth [3] for a more flexible representation of the problem. Additionally, the generation of a digital rock representation based on CT-scans of the granular sample is utilised to derive its inner surface area [4]. The experiments were modelled using core-scale reactive transport simulations. The three observed cases at varying supersaturations were reproduced with regard to evolution of sample rock composition and porosity.</p><p>In a next step, the characteristic values taken from the calibrated reactive transport models can be further integrated into the existing digital rock physics model [4], thus enabling the development of up-scaled relationships such as reactive surface area as a function of mineral fractions and porosity. The resulting models can then be applied to reservoir-scale simulations for various applications related to subsurface utilisation. </p><p>---</p><p>[1] Tranter, M., De Lucia, M., Wolfgramm, M., Kühn, M., 2020. Barite Scale Formation and Injectivity Loss Models for Geothermal Systems. Water 12, 3078. https://doi.org/10/ghntzk<br>[2] Poonoosamy, J., Klinkenberg, M., Deissmann, G., Brandt, F., Bosbach, D., Mäder, U., Kosakowski, G., 2020. Effects of solution supersaturation on barite precipitation in porous media and consequences on permeability: Experiments and modelling. Geochimica et Cosmochimica Acta 270, 43–60. https://doi.org/10/ghntxn<br>[3] Tranter, M., De Lucia, M., Kühn, M., 2021. Numerical investigation of barite scaling kinetics in fractures. Geothermics 91, 102027. https://doi.org/10/ghr89n<br>[4] Wetzel, M., Kempka, T., Kühn, M., 2020. Hydraulic and Mechanical Impacts of Pore Space Alterations within a Sandstone Quantified by a Flow Velocity-Dependent Precipitation Approach. Materials 13, 3100. https://doi.org/10/ghsp42</p>

1999 ◽  
Vol 556 ◽  
Author(s):  
Robert W. Smith ◽  
Annette L. Schafer

AbstractAlthough transport calculations are often formulated in terms of mass-based isotropic distribution coefficients, it is the abundance of reactive surface areas of subsurface materials that controls contaminant adsorption. In water-saturated homogeneous systems devoid of advective fluxes (e.g., batch experiments), the available reactive surface area is similar to the total surface area (as measured by conventional methods such as BET gas adsorption). However, in physically and chemically heterogeneous systems with advective fluxes, the effective reactive surface area (i.e., the surface area that a packet of advecting water interacts with) is smaller than the laboratory measured surface area and is a complex function of advective velocity and the correlation structures of the physical and chemical heterogeneities. Theoretical derivations for an important but simple type of heterogeneity (fine-scale horizontal layering) suggest that the effective reactive surface area is an anisotropic property of the medium and is inversely correlated with the anisotropy in hydraulic conductivity. The implications of reactive transport anisotropy include the concept that the retardation factor should be treated as a directional property rather than being treated as a constant. Furthermore, because of the inverse relationship between effective reactive surface area and hydraulic conductivity, batch adsorption experiments tend to overestimate the retention of contaminants relative to intact natural materials.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1608
Author(s):  
Wei Jia ◽  
Ting Xiao ◽  
Zhidi Wu ◽  
Zhenxue Dai ◽  
Brian McPherson

Mineral reactive surface area (RSA) is one of the key factors that control mineral reactions, as it describes how much mineral is accessible and can participate in reactions. This work aims to evaluate the impact of mineral RSA on numerical simulations for CO2 storage at depleted oil fields. The Farnsworth Unit (FWU) in northern Texas was chosen as a case study. A simplified model was used to screen representative cases from 87 RSA combinations to reduce the computational cost. Three selected cases with low, mid, and high RSA values were used for the FWU model. Results suggest that the impact of RSA values on CO2 mineral trapping is more complex than it is on individual reactions. While the low RSA case predicted negligible porosity change and an insignificant amount of CO2 mineral trapping for the FWU model, the mid and high RSA cases forecasted up to 1.19% and 5.04% of porosity reduction due to mineral reactions, and 2.46% and 9.44% of total CO2 trapped in minerals by the end of the 600-year simulation, respectively. The presence of hydrocarbons affects geochemical reactions and can lead to net CO2 mineral trapping, whereas mineral dissolution is forecasted when hydrocarbons are removed from the system.


2017 ◽  
Vol 122 (9) ◽  
pp. 1855-1879 ◽  
Author(s):  
Alberto G. Fairén ◽  
Carolina Gil-Lozano ◽  
Esther R. Uceda ◽  
Elisabeth Losa-Adams ◽  
Alfonso F. Davila ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document