Variations in spectral reflectivity and vertical cloud structure of Jupiter’s Great Red Spot

2020 ◽  
Author(s):  
Asier Anguiano-Arteaga ◽  
Santiago Pérez-Hoyos ◽  
Agustín Sánchez-Lavega

<p>The Great Red Spot (GRS) of Jupiter is a large anticyclonic vortex present in the Jovian atmosphere. First observed in the XVII century, it is almost constantly located at 22°S. Since its discovery it has gradually decreased in size at an average rate of 170 km/year in longitude and 60 km/year in latitude. The nature of the chromophore species that provide its characteristic color to the GRS’s upper clouds and hazes is still largely unknown, as well as its creation and destruction mechanisms. During year 2019, the GRS began to lose some of this reddish material as a consequence of the interaction with other vortices present in nearby latitudes, raising serious doubts about its possible disappearance (Sánchez-Lavega et al., 2019).</p> <p>In this work we have analyzed images provided by the Hubble Space Telescope between 2015 and 2019, with a spectral coverage from the ultraviolet to the near infrared, including some methane absorption bands of different depths. These images have been calibrated in absolute reflectivity, and from them we have obtained the spectral variations in brightness that occur in different dynamically interesting regions of the GRS and its surroundings.</p> <p>The spectral reflectivity of the studied regions over the mentioned years has been analyzed using the NEMESIS radiative transfer code (Irwin et al., 2008). In this way it has been possible to retrieve the main features playing a key role in the spectral reflectivity of GRS’s upper clouds and hazes, such as particle size distribution, refractive indexes and optical thickness. At the same time, this analysis has provided the vertical distribution of particles for pressure levels above 1 bar, allowing a comparative study of its evolution over recent years.</p> <p><strong>References</strong></p> <p>-Irwin, P. G. J., Teanby, N. A., de Kok, R., Fletcher, L. N., Howett, C. J. A., Tsang, C. C. C., . . . Parrish, P. D. (2008, April). The NEMESIS planetary atmosphere radiative transfer and retrieval tool. <em>Journal of Quant. Spec. and Radiative Transfer</em>, 109, 1136-1150. doi: 10.1016/j.jqsrt.2007.11.006</p> <p>- Sánchez-Lavega, A., Iñurrigarro, P., Anguiano-Arteaga, A., Garcia-Melendo, E., Legarreta, J., Hueso, R., Sanz-Requena, J.F., Pérez-Hoyos, S.,  Mendikoa, I., Soria, M., Rojas, J.F. Jupiter’s Great Red Spot threatened along 2019 by strong interactions with close anticyclones, AGU Fall Meeting, P44A-01, San Francisco, 12 December 2019</p>

2021 ◽  
Author(s):  
Asier Anguiano-Arteaga ◽  
Santiago Pérez-Hoyos ◽  
Agustín Sánchez-Lavega ◽  
Patrick G.J. Irwin

<p>The Great Red Spot (GRS) of Jupiter is a large anticyclonic vortex present in the Jovian atmosphere. First observed in the XVII century, it is almost constantly located at 22°S and it is arguably one of the main atmospheric phenomena in the Solar System. Despite having been widely studied, the nature of the chromophore species that provide its characteristic colour to the GRS’s upper clouds and hazes is still unclear, as well as its creation and destruction mechanisms.</p><p>In this work we have analysed images provided by the Hubble Space Telescope’s Wide Field Camera 3 between 2015 and 2019, with a spectral coverage from the ultraviolet to the near infrared, including two methane absorption bands. These images have undergone a photometric process of cross calibration, ensuring a consistent correlation among the images corresponding to different visits and years. From such calibrated images, we have obtained the spectral reflectivity of the GRS and its surroundings, with particular emphasis on a few, dynamically interesting regions.</p><p>We used the NEMESIS radiative transfer suite to retrieve the main atmospheric parameters (particle vertical and size distributions, refractive indices…) that are able to explain the observed spectral reflectivity of the selected regions. Here we report the spatial and temporal variations on such parameters and their implications on the GRS overall dynamics.</p>


2020 ◽  
Author(s):  
Ricardo Hueso ◽  
Imke de Pater ◽  
Amy Simon ◽  
Mike Wong ◽  
Larry Sromovsky ◽  
...  

<p>Neptune’s atmosphere is covered by tropospheric clouds and elevated hazes that are highly contrasted in hydrogen and methane absorption bands that dominate the red and near-infrared spectrum of the planet. The major cloud systems observed in these wavelengths evolve in time-scales of days, months and years. However, the differential rotation of the atmosphere, and the vertical wind shear implied by the motion of some of these systems, result in challenges in identifying common cloud systems observed in images obtained with a time difference of only a few weeks. Given the small apparent size of Neptune’s disk (2.3 arc sec at best) there are outstanding difficulties in obtaining sufficient high-resolution data to trace Neptune’s atmospheric dynamics and study the variability in the atmosphere.</p><p>In 2019 Neptune has been observed by a battery of different large telescopes and techniques including: Adaptive Optics observations from the Keck, Lick and other telescopes, observations from Hubble Space Telescope in two different dates, and lucky-imaging observations with the GranTeCan 10.4m, Calar Alto 2.2m and the 1.05m Pic du Midi telescope. In addition, some ground-based observers using small telescopes of 30-40 cm have been successful to image Neptune’s major clouds completing a dense time-line of observations. We will present comparative results of Neptune’s major cloud systems observed with these facilities at a variety of spatial resolutions and long-term drift rates of some of these cloud systems. These will be compared with similar multi-telescope results obtained in the past with several of these telescopes since 2015. Future punctual observations achievable with new observational facilities such as the JWST will benefit from ground-based coordinated campaigns and will require a combination of several telescopes to understand drift rates and evolutionary time-lines of major cloud systems in Neptune.</p>


1971 ◽  
Vol 40 ◽  
pp. 375-383
Author(s):  
V. G. Teifel ◽  
L. A. Usoltzeva ◽  
G. A. Kharitonova

Spectrophotometric (photographic and photoelectric) measurements of the intensity of CH4 absorption bands at 6190 and 7250 Å over different regions of Saturn's disk show an increase in intensity toward the poles and a decrease toward the equatorial limb. In the bright equatorial belt of Saturn the methane absorption is about 25–28% less than in the south temperate belt (latitude about −20°).Absolute photoelectric spectrophotometry of Saturn's disk gives a value for the single-scattering albedo of the aerosol particles at λ 6200–6500 Å at the center of the disk. Calculations of the curves of growth for the absorption lines formed in the thin gas and in the cloud layer were made and the comparison with observations of Jupiter and Saturn lead to the mean value of the volume scattering coefficient of the aerosol layer σa < 5 × 10−6 cm−1. In the equatorial region of Saturn σa is larger than in the temperate region by a factor 1.3 to 1.8.The models of Saturn's atmosphere that fit well the observational data preclude the condensation of methane. An aerosol layer of ammonia is more probable in the atmosphere of Saturn. Calculations of the distribution of the ammonia aerosol volume density (Qa) give Qa ≃ 10−9 to 10−7 gm/cm3 for relative abundances of ammonia A = 10−6 to 10−4. Observational estimates of Qa derived from the values of σa give Qa < 10−9 gm/cm3. Apparently Saturn's atmosphere departs from conditions of ordinary convection.Some very interesting variations in the spectral reflectivity of the different regions of Saturn are observed, especially in the ultraviolet. These data, as well as a systematic study of the methane absorptions in the near infrared strong bands are needed in future studies of Saturn's atmosphere.


2020 ◽  
Vol 500 (3) ◽  
pp. 3920-3925
Author(s):  
Wolfgang Brandner ◽  
Hans Zinnecker ◽  
Taisiya Kopytova

ABSTRACT Only a small number of exoplanets have been identified in stellar cluster environments. We initiated a high angular resolution direct imaging search using the Hubble Space Telescope (HST) and its Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) instrument for self-luminous giant planets in orbit around seven white dwarfs in the 625 Myr old nearby (≈45 pc) Hyades cluster. The observations were obtained with Near-Infrared Camera 1 (NIC1) in the F110W and F160W filters, and encompass two HST roll angles to facilitate angular differential imaging. The difference images were searched for companion candidates, and radially averaged contrast curves were computed. Though we achieve the lowest mass detection limits yet for angular separations ≥0.5 arcsec, no planetary mass companion to any of the seven white dwarfs, whose initial main-sequence masses were &gt;2.8 M⊙, was found. Comparison with evolutionary models yields detection limits of ≈5–7 Jupiter masses (MJup) according to one model, and between 9 and ≈12 MJup according to another model, at physical separations corresponding to initial semimajor axis of ≥5–8 au (i.e. before the mass-loss events associated with the red and asymptotic giant branch phase of the host star). The study provides further evidence that initially dense cluster environments, which included O- and B-type stars, might not be highly conducive to the formation of massive circumstellar discs, and their transformation into giant planets (with m ≥ 6 MJup and a ≥6 au). This is in agreement with radial velocity surveys for exoplanets around G- and K-type giants, which did not find any planets around stars more massive than ≈3 M⊙.


2021 ◽  
Vol 13 (3) ◽  
pp. 434
Author(s):  
Ana del Águila ◽  
Dmitry S. Efremenko

Fast radiative transfer models (RTMs) are required to process a great amount of satellite-based atmospheric composition data. Specifically designed acceleration techniques can be incorporated in RTMs to simulate the reflected radiances with a fine spectral resolution, avoiding time-consuming computations on a fine resolution grid. In particular, in the cluster low-streams regression (CLSR) method, the computations on a fine resolution grid are performed by using the fast two-stream RTM, and then the spectra are corrected by using regression models between the two-stream and multi-stream RTMs. The performance enhancement due to such a scheme can be of about two orders of magnitude. In this paper, we consider a modification of the CLSR method (which is referred to as the double CLSR method), in which the single-scattering approximation is used for the computations on a fine resolution grid, while the two-stream spectra are computed by using the regression model between the two-stream RTM and the single-scattering approximation. Once the two-stream spectra are known, the CLSR method is applied the second time to restore the multi-stream spectra. Through a numerical analysis, it is shown that the double CLSR method yields an acceleration factor of about three orders of magnitude as compared to the reference multi-stream fine-resolution computations. The error of such an approach is below 0.05%. In addition, it is analysed how the CLSR method can be adopted for efficient computations for atmospheric scenarios containing aerosols. In particular, it is discussed how the precomputed data for clear sky conditions can be reused for computing the aerosol spectra in the framework of the CLSR method. The simulations are performed for the Hartley–Huggins, O2 A-, water vapour and CO2 weak absorption bands and five aerosol models from the optical properties of aerosols and clouds (OPAC) database.


2007 ◽  
Vol 22 (9) ◽  
pp. 2531-2538 ◽  
Author(s):  
Mei Chee Tan ◽  
Jackie Y. Ying ◽  
Gan Moog Chow

Near infrared (NIR) absorbing nanoparticles synthesized by the reduction of HAuCl4 with Na2S exhibited absorption bands at ∼530 nm, and in the NIR region of 650–1100 nm. The NIR optical properties were not found to be related to the earlier proposed Au2S–Au core-shell microstructure in previous studies. From a detailed study of the structure and microstructure of as-synthesized particles in this work, S-containing, Au-rich, multiply-twinned nanoparticles were found to exhibit NIR absorption. They consisted of amorphous AuxS (where x = 2), mostly well mixed within crystalline Au, with a small degree of surface segregation of S. Therefore, NIR absorption was likely due to interfacial effects on particle polarization from the introduction of AuxS into Au particles, and not the dielectric confinement of plasmons associated with a core-shell microstructure.


2008 ◽  
Vol 23 (1) ◽  
pp. 281-293 ◽  
Author(s):  
Mei Chee Tan ◽  
Jackie Y. Ying ◽  
Gan Moog Chow

Near-infrared (NIR)-absorbing nanoparticles synthesized by the reduction of tetrachloroauric acid (HAuCl4) using sodium sulfide (Na2S) exhibited absorption bands at ∼530 nm and at the NIR region of 650−1100 nm. A detailed study on the structure and microstructure of as-synthesized nanoparticles was reported previously. The as-synthesized nanoparticles were found to consist of amorphous AuxS (x = ∼2), mostly well mixed within crystalline Au. In this work, the optical properties were tailored by varying the precursor molar ratios of HAuCl4 and Na2S. In addition, a detailed study of composition and particle-size effects on the optical properties was discussed. The change of polarizability by the introduction of S in the form of AuxS (x = ∼2) had a significant effect on NIR absorption. Also, it was found in this work that exposure of these particles to NIR irradiation using a Nd:YAG laser resulted in loss of the NIR absorption band. Thermal effects generated during NIR irradiation had led to microstructural changes that modified the optical properties of particles.


Sign in / Sign up

Export Citation Format

Share Document