Line of Sight Analysis 

2021 ◽  
Author(s):  
Emily Law ◽  
Natalie Gallegos ◽  
Shan Malhotra

<p>The Line of Sight (LoS) is one of the latest tools to join the analytics suite of tools for the Solar System Treks (https://trek.nasa.gov) portals.  The LoS tool provides a way to compute visibility between the entities in our solar system. More concretely, this utility searches for windows of communication or a “line of sight” between any two entities. Entities include orbiters, rovers, planetary bodies, ground stations, and other topographical locations. In addition to establishing communications between the two entities, the tool also takes into account local terrains of the entities in question.</p> <p>The software seeks to answer questions about establishing communications between a rover and an orbiter, or an orbiter to a ground station. In mission planning, LoS can be used to determine possible traverses for a rover that must maintain communications with a lander, or find time intervals of communication to an orbiter when a rover or lander are near an obstructing surface feature such as a crater rim or mound. Computations can be even more granular and lines of sight can be computed between mission instruments, thus allowing to ask questions such as “Is the High Gain Antenna on a rover visible from an orbiter?”</p> <p>The initial release of the software focuses on the lunar surface and the LRO spacecraft. Users can ask whether a topographical location on the moon is visible from the orbiter or a discrete set of ground stations on Earth. The tool uses NAIF SPICE and various mission kernels for computing planetary geometries. LoS also uses high resolution Digital Elevation Model (DEM) to model the terrain surrounding the points of interest. In-house software is used to convert high resolution DEMs into a format compatible with the tool. Users can provide their own DEMs to model the terrain on different topographical locations to use for their own computations.</p>

2022 ◽  
Vol 9 ◽  
Author(s):  
Hamad Al-Ajami ◽  
Ahmed Zaki ◽  
Mostafa Rabah ◽  
Mohamed El-Ashquer

A new gravimetric geoid model, the KW-FLGM2021, is developed for Kuwait in this study. This new geoid model is driven by a combination of the XGM2019e-combined global geopotential model (GGM), terrestrial gravity, and the SRTM 3 global digital elevation model with a spatial resolution of three arc seconds. The KW-FLGM2021 has been computed by using the technique of Least Squares Collocation (LSC) with Remove-Compute-Restore (RCR) procedure. To evaluate the external accuracy of the KW-FLGM2021 gravimetric geoid model, GPS/leveling data were used. As a result of this evaluation, the residual of geoid heights obtained from the KW-FLGM2021 geoid model is 2.2 cm. The KW-FLGM2021 is possible to be recommended as the first accurate geoid model for Kuwait.


2021 ◽  
Author(s):  
Shizhou Ma ◽  
Karen Beazley ◽  
Patrick Nussey ◽  
Chris Greene

Abstract The Active River Area (ARA) is a spatial approach for identifying the extent of functional riparian area. Given known limitations in terms of input elevation data quality and methodology, ARA studies to date have not achieved effective computer-based ARA-component delineation, limiting the efficacy of the ARA framework in terms of informing riparian conservation and management. To achieve framework refinement and determine the optimal input elevation data for future ARA studies, this study tested a novel Digital Elevation Model (DEM) smoothing algorithm and assessed ARA outputs derived from a range of DEMs for accuracy and efficiency. It was found that the tested DEM smoothing algorithm allows the ARA framework to take advantage of high-resolution LiDAR DEM and considerably improves the accuracy of high-resolution LiDAR DEM derived ARA results; smoothed LiDAR DEM in 5-meter spatial resolution best balanced ARA accuracy and data processing efficiency and is ultimately recommended for future ARA delineations across large regions.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 403 ◽  
Author(s):  
Pengbo Hu ◽  
Jingming Hou ◽  
Zaixing Zhi ◽  
Bingyao Li ◽  
Kaihua Guo

The high-resolution topography is very crucial to investigate the hydrological and hydrodynamic process. To resolve the deficiency problem of high resolution terrain data in rivers, the Quartic Hermite Spline with Parameter (QHSP) method constructing the river channel terrain based on the limited cross-section data is presented. The proposed method is able to not only improve the reliability of the constructed river terrain, but also avoid the numerical oscillations caused by the existing constructing approach, e.g., the Cubic Hermite Spline (CHS) method. The performance of the proposed QHSP method is validated against two benchmark tests. Comparing the constructed river terrains, the QHSP method can improve the accuracy by at least 15%. For the simulated flood process, the QHSP method could reproduce more acceptable modeling results as well, e.g., in Wangmaogou catchment, the numerical model applying the Digital Elevation Model (DEM) produced by the QHSP method could increase the reliability by 18.5% higher than that of CHS method. It is indicated that the QHSP method is more reliable for river terrain model construction than the CHS and is a more reasonable tool investigating the hydrodynamic processes in river channels lacking of high resolution topography data.


2018 ◽  
Author(s):  
Fabio Cian ◽  
Mattia Marconcini ◽  
Pietro Ceccato ◽  
Carlo Giupponi

Abstract. When floods hit inhabited areas, great losses are usually registered both in terms of impacts on people (i.e., fatalities and injuries) as well as economic impacts on urban areas, commercial and productive sites, infrastructures and agriculture. To properly assess these, several parameters are needed among which flood depth is one of the most important as it governs the models used to compute damages in economic terms. This paper presents a simple yet effective semi-automatic approach for deriving very precise inundation depth. First, precise flood extent is derived employing a change detection approach based on the Normalized Difference Flood Index computed from high resolution Synthetic Aperture Radar imagery. Second, by means of a high-resolution Light Detection And Ranging Digital Elevation Model, water surface elevation is estimated through a statistical analysis of terrain elevation along the boundary lines of the identified flooded areas. Experimental results and quality assessment are given for the flood occurred in the Veneto region, North-Eastern Italy, in 2010. In particular, the method proved fast and robust and, compared to hydrodynamic models, it requires sensibly less input information.


2016 ◽  
Vol 20 (3) ◽  
pp. 1211-1223 ◽  
Author(s):  
Klaus Haslinger ◽  
Annett Bartsch

Abstract. A new approach for the construction of high-resolution gridded fields of reference evapotranspiration for the Austrian domain on a daily time step is presented. Gridded data of minimum and maximum temperatures are used to estimate reference evapotranspiration based on the formulation of Hargreaves. The calibration constant in the Hargreaves equation is recalibrated to the Penman–Monteith equation in a monthly and station-wise assessment. This ensures, on one hand, eliminated biases of the Hargreaves approach compared to the formulation of Penman–Monteith and, on the other hand, also reduced root mean square errors and relative errors on a daily timescale. The resulting new calibration parameters are interpolated over time to a daily temporal resolution for a standard year of 365 days. The overall novelty of the approach is the use of surface elevation as the only predictor to estimate the recalibrated Hargreaves parameter in space. A third-order polynomial is fitted to the recalibrated parameters against elevation at every station which yields a statistical model for assessing these new parameters in space by using the underlying digital elevation model of the temperature fields. With these newly calibrated parameters for every day of year and every grid point, the Hargreaves method is applied to the temperature fields, yielding reference evapotranspiration for the entire grid and time period from 1961–2013. This approach is opening opportunities to create high-resolution reference evapotranspiration fields based only temperature observations, but being as close as possible to the estimates of the Penman–Monteith approach.


2018 ◽  
Vol 12 (5) ◽  
pp. 1811-1829 ◽  
Author(s):  
Sam Herreid ◽  
Francesca Pellicciotti

Abstract. Ice cliffs within a supraglacial debris cover have been identified as a source for high ablation relative to the surrounding debris-covered area. Due to their small relative size and steep orientation, ice cliffs are difficult to detect using nadir-looking space borne sensors. The method presented here uses surface slopes calculated from digital elevation model (DEM) data to map ice cliff geometry and produce an ice cliff probability map. Surface slope thresholds, which can be sensitive to geographic location and/or data quality, are selected automatically. The method also attempts to include area at the (often narrowing) ends of ice cliffs which could otherwise be neglected due to signal saturation in surface slope data. The method was calibrated in the eastern Alaska Range, Alaska, USA, against a control ice cliff dataset derived from high-resolution visible and thermal data. Using the same input parameter set that performed best in Alaska, the method was tested against ice cliffs manually mapped in the Khumbu Himal, Nepal. Our results suggest the method can accommodate different glaciological settings and different DEM data sources without a data intensive (high-resolution, multi-data source) recalibration.


Sign in / Sign up

Export Citation Format

Share Document