Ulysses spacecraft data revisited: Detection of cometary meteoroid streams by following in situ dust impacts

2021 ◽  
Author(s):  
Harald Krüger ◽  
Peter Strub ◽  
Eberhard Grün

<p>Cometary meteoroid streams (also referred to as trails) exist along the orbits of comets, forming fine structures of the interplanetary dust cloud. The streams consist predominantly of the largest cometary particles (with sizes of approximately (100 micrometer to 1 cm) which are ejected at low speeds and remain very close to the comet orbit for several revolutions around the Sun. </p> <p>The Interplanetary Meteoroid Environment for eXploration (IMEX) dust streams in space model (Soja et al., Astronomy & Astrophysics, 2015) is a universal model that simulates recently created cometary dust streams in the inner solar system, developed under ESA contract. IMEX is a physical model for dust dynamics and follows the orbital evolution of the streams of 420 comets. Particles are emitted when the comet is in the inner solar system, taking into account comet apparitions between the years 1700 and 2080. The dust ejection is described by an emission model, dust production rate and mass distribution covering the mass range from 10^-8 kg to 10^-2 kg (approximately corresponding to 100 micrometer to 1 cm particles). The dust production is calculated from the comet's absolute magnitude, the observed water production rate and dust-to-gas ratio. For each emitted particle, the trajectory is integrated individually including solar gravity, planetary perturbations as well as solar radiation pressure and <br />Poynting-Robertson drag. The model calculates dust number density, flux and  velocity.</p> <p>We apply the IMEX model to study comet stream traverses by the Ulysses spacecraft. Ulysses was launched in 1990 and, after a Jupiter swing-by in 1992, became the first interplanetary spacecraft orbiting the Sun on a highly inclined  trajectory with an inclination of 80 degrees. The spacecraft was equipped with an impact ionization dust detector which provided the longest  data set of continuous in situ dust measurements in interplanetary space existing to date, covering 17 years  from 1990 to 2007. In addition to the interplanetary dust complex, several dust populations were investigated with the Ulysses dust instrument in the past: interstellar dust sweeping through our solar system, streams of approximately 10 nanometer-sized dust particles emanating from Jupiter's volcanically active moon Io, as well as sub-micrometer-sized particles driven away from the Sun by solar radiation pressure (so-called beta particles). Here we study the detection conditions for cometary meteoroid streams with the dust detector on board the Ulysses spacecraft and present first results from our attempt to identify cometary stream particles in the measured dust data set. </p> <p>Acknowledgements: The IMEX Dust Streams in Space model was developed under ESA funding (contract 4000106316/12/NL/AF - IMEX).</p>

1994 ◽  
Vol 160 ◽  
pp. 367-380
Author(s):  
Eberhard Grün

In-situ measurements of micrometeoroids provide information on the spatial distribution of interplanetary dust and its dynamical properties. Pioneers 10 and 11, Galileo and Ulysses spaceprobes took measurements of interplanetary dust from 0.7 to 18 AU distance from the sun. Distinctly different populations of dust particles exist in the inner and outer solar system. In the inner solar system, out to about 3 AU, zodiacal dust particles are recognized by their scattered light, their thermal emission and by in-situ detection from spaceprobes. These particles orbit the sun on low inclination (i ≤ 30°) and moderate eccentricity (e ≤ 0.6) orbits. Their spatial density falls off with approximately the inverse of the solar distance. Dust particles on high inclination or even retrograde trajectories dominate the dust population outside about 3 AU. The dust detector on board the Ulysses spaceprobe identified interstellar dust sweeping through the outer solar system on hyperbolic trajectories. Within about 2 AU from Jupiter Ulysses discovered periodic streams of dust particles originating from within the jovian system.


2020 ◽  
Author(s):  
Jamey Szalay ◽  
Petr Pokorny ◽  
Mihaly Horanyi ◽  
Stuart Bale ◽  
Eric Christian ◽  
...  

<p>The zodiacal cloud in the inner solar system undergoes continual evolution, as its dust grains are collisionally ground and sublimated into smaller and smaller sizes. Sufficiently small (~<500 nm) grains known as beta-meteoroids are ejected from the inner solar system on hyperbolic orbits under the influence of solar radiation pressure. These small grains can reach significantly larger speeds than those in the nominal zodiacal cloud and impact the surfaces of airless bodies. Since the discovery of the Moon's asymmetric ejecta cloud, the origin of its sunward-canted density enhancement has not been well understood. We propose impact ejecta from beta-meteoroids that hit the Moon's sunward side could explain this unresolved asymmetry. The proposed hypothesis rests on the fact that beta-meteoroids are one of the few truly asymmetric meteoroid sources in the solar system, as unbound grains always travel away from the Sun and lack a symmetric inbound counterpart. This finding suggests beta-meteoroids may also contribute to the evolution of other airless surfaces in the inner solar system as well as within other exo-zodiacal disks. We will also highlight recent observations from the Parker Solar Probe (PSP) spacecraft, which suggest it is being bombarded by the very same beta-meteoroids. We discuss how observations by PSP, which lacks a dedicated dust detector, can be used to inform the structure and variability of beta-meteoroids in the inner solar system closer to the Sun than ever before.</p>


2020 ◽  
Vol 643 ◽  
pp. A96
Author(s):  
Harald Krüger ◽  
Peter Strub ◽  
Max Sommer ◽  
Nicolas Altobelli ◽  
Hiroshi Kimura ◽  
...  

Context. Cometary meteoroid trails exist in the vicinity of comets, forming a fine structure of the interplanetary dust cloud. The trails consist predominantly of the largest cometary particles (with sizes of approximately 0.1 mm–1 cm), which are ejected at low speeds and remain very close to the comet orbit for several revolutions around the Sun. In the 1970s, two Helios spacecraft were launched towards the inner Solar System. The spacecraft were equipped with in situ dust sensors which measured the distribution of interplanetary dust in the inner Solar System for the first time. Recently, when re-analysing the Helios data, a clustering of seven impacts was found, detected by Helios in a very narrow region of space at a true anomaly angle of 135 ± 1°, which the authors considered as potential cometary trail particles. However, at the time, this hypothesis could not be studied further. Aims. We re-analyse these candidate cometary trail particles in the Helios dust data to investigate the possibility that some or all of them indeed originate from cometary trails and we constrain their source comets. Methods. The Interplanetary Meteoroid Environment for eXploration (IMEX) dust streams in space model is a new and recently published universal model for cometary meteoroid streams in the inner Solar System. We use IMEX to study the traverses of cometary trails made by Helios. Results. During ten revolutions around the Sun, the Helios spacecraft intersected 13 cometary trails. For the majority of these traverses the predicted dust fluxes are very low. In the narrow region of space where Helios detected the candidate dust particles, the spacecraft repeatedly traversed the trails of comets 45P/Honda-Mrkos-Pajdušáková and 72P/Denning-Fujikawa with relatively high predicted dust fluxes. The analysis of the detection times and particle impact directions shows that four detected particles are compatible with an origin from these two comets. By combining measurements and simulations we find a dust spatial density in these trails of approximately 10−8–10−7 m−3. Conclusions. The identification of potential cometary trail particles in the Helios data greatly benefited from the clustering of trail traverses in a rather narrow region of space. The in situ detection and analysis of meteoroid trail particles which can be traced back to their source bodies by spacecraft-based dust analysers provides a new opportunity for remote compositional analysis of comets and asteroids without the necessity to fly a spacecraft to or even land on those celestial bodies. This provides new science opportunities for future missions like DESTINY+ (Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science), Europa Clipper, and the Interstellar Mapping and Acceleration Probe.


1980 ◽  
Vol 90 ◽  
pp. 277-278
Author(s):  
E. Grün

The Helios 1 spacecraft was launched in December 1974 into a heliocentric orbit of 0.3 AU perihelion distance. It carries on board a micro-meteoroid experiment which contains two sensors with a total sensitive area of 121 cm2. The ecliptic sensor measures dust particles which have trajectories with elevations from −45° to +55° with respect to the ecliptic plane. The south sensor detects dust particles from −90° to −4°. The ecliptic sensor is covered by a thin film (3000 Å parylene coated with 750 Å aluminium) as protection against solar radiation. The other sensor is shielded by the spacecraft rim from direct sunlight and has an open aperture. Micrometeoroids are detected by the electric charge produced upon impact and the ions are mass analysed in a time-of-flight-spectrometer. During the first 6 orbits of Helios 1 around the sun the experiment registered a total of 168 meteoroids, 52 particles were detected by the ecliptic sensor and 116 particles by the south sensor. Most impacts on the ecliptic sensor were observed when it was pointing in the direction of motion of Helios (apex direction). In contrast to that the south sensor detected most impacts when it was facing in between the solar and antapex directions. Orbit analysis showed that the “apex” particles which are predominantly detected by the ecliptic sensor have eccentricities e < 0.4 or semimajor axes a < 0.5 AU. From comparison with corresponding data from the south sensor it is concluded that the average inclination of these particles is below 30°. The excess of impacts on the south sensor have orbit eccentricities e > 0.5 AU. β-meteoroids which leave the solar system on hyperbolic orbits are directly identified by the imbalance of outgoing (away from the sun) and ingoing particles. Mass analyses of the spectra showed that 40% of the observed spectra have the peak abundance above mass 35 amu which are preliminarily identified as iron meteoroids. 40% of the spectra have the peak abundance below mass 35 amu which correspond to chondritic composition. 20% of the spectra could not be identified in either class.


1976 ◽  
Vol 31 ◽  
pp. 459-463
Author(s):  
G. Schwehm

The force acting on an interplanetary dust particle due to solar radiation pressure at a distance R from the sun is given by


2021 ◽  
Vol 57 (2) ◽  
pp. 279-295
Author(s):  
L. O. Marchi ◽  
D. M. Sanchez ◽  
F. C. F. Venditti ◽  
A. F. B. A. Prado ◽  
A. K. Misra

In this work, we study the effects of solar radiation pressure (SRP) on the problem of changing the orbit of an asteroid to support planetary defense, scientific research, or exploitation of materials. This alternative considers a tethered reflective balloon (or a set of reflective balloons) attached to the asteroid, with a high area-to-mass ratio, to use the SRP to deflect a potentially hazardous asteroid (PHA) or to approximate the target asteroid to Earth. The tether is assumed to be inextensible and massless, and the motion is described only in the orbital plane of the asteroid around the Sun. The model is then used to study the effects that the tether length, the reflectivity coefficient, and the area-to-mass ratio have on the deviation of the trajectory of the asteroid.


2020 ◽  
Author(s):  
Youssef Moulane ◽  
Emmanuel Jehin ◽  
Francisco José Pozuelos ◽  
Jean Manfroid ◽  
Zouhair Benkhaldoun ◽  
...  

&lt;p&gt;Long Period Comets (LPCs) have orbital periods longer than 200 years, perturbed from their resting place in the Oort cloud. Such gravitational influences may send these icy bodies on a path towards the center of the Solar system in highly elliptical orbits. In this work, we present the activity and composition evolution of several LPCs observed with both TRAPPIST telescopes (TS and TN) during the period of 2019-2020. These comets include: C/2017 T2 (PANSTARRS), C/2018 Y1 (Iwamoto), C/2018 W2 (Africano), and disintegrated comet C/2019 Y4 (ATLAS). We monitored the OH, NH, CN, C&lt;sub&gt;2&lt;/sub&gt; and C&lt;sub&gt;3&lt;/sub&gt; production rates evolution and their chemical mixing ratios with respect to their distances to the Sun as well as the dust production rate proxy (A(0)fp) during the journey of these comets into the inner Solar system.&lt;/p&gt; &lt;p&gt;&lt;strong&gt;C/2017 T2 (PANSTARRS)&lt;/strong&gt; is a very bright comet which was discovered on October 2, 2017 when it was 9.20 au from the Sun. We started observing this comet with TS at the beginning of August 2019 when it was at 3.70 au. The comet made the closest approach to the Earth on December 28, 2019 at a distance of 1.52 au and it passed the perihelion on May 4, 2020 at 1.61 au. The water production rate of the comet reached a maximum of (4,27&amp;#177;0,12)10&lt;sup&gt;28 &lt;/sup&gt;molecules/s and its dust production rate (A(0)fp(RC)) also reached the peak of 5110&amp;#177;25 cm on January 26, 2020, when the comet was at 2.08 au from the Sun (-100 days pre-perihelion). At the time of writing, we still monitoring the activity of the comet with TN at heliocentric distance of 1.70 au. Our observations show that C/2017 T2 is a normal LPC.&lt;/p&gt; &lt;p&gt;&lt;strong&gt;C/2018 Y1 (Iwamoto)&lt;/strong&gt; is a nearly parabolic comet with a retrograde orbit discovered on December 18, 2018 by Japanese amateur astronomer Masayuki Iwamoto. We monitored the activity and composition of Iwamoto with both TN and TS telescopes from January to March 2019. The comet reached its maximum activity on January 29, 2019 when it was at 1.29 au from the Sun (-8 days pre-perihelion) with Q(H&lt;sub&gt;2&lt;/sub&gt;O)=(1,68&amp;#177;0,05)10&lt;sup&gt;28 &lt;/sup&gt;molecules/s and A(0)fp(RC)= 92&amp;#177;5 cm. These measurements show that it was a dust-poor comet compared to the typical LPCs.&lt;/p&gt; &lt;p&gt;&lt;strong&gt;C/2018 W2 (Africano) &lt;/strong&gt;was discovered on November 27, 2018 at Mount Lemmon Survey with a visual magnitude of 20. The comet reached its perihelion on September 6, 2019 when it was at 1.45 au from the Sun. We monitored the comet from July 2019 (r&lt;sub&gt;h&lt;/sub&gt;=1.71 au) to January 2020 (r&lt;sub&gt;h&lt;/sub&gt;=2.18 au) with both TN and TS telescopes. The comet reached its maximum activity on September 21, 15 days post-perihelion (r&lt;sub&gt;h&lt;/sub&gt;=1.47 au) with Q(H&lt;sub&gt;2&lt;/sub&gt;O)=(0,40&amp;#177;0,03)10&lt;sup&gt;28 &lt;/sup&gt;molecules/s.&lt;/p&gt; &lt;p&gt;&lt;strong&gt;C/2019 Y4 (ATLAS)&lt;/strong&gt; is a comet with a nearly parabolic orbit discovered on December 18, 2019 by the ATLAS survey. We started to follow its activity and composition with broad- and narrow-band filters with the TN telescope on February 22, 2019 when it was at 1.32 au from the Sun until May 3, 2020 when the comet was at a heliocentric distance of 0.90 au inbound. The comet activity reached a maximum on March 22 (r&lt;sub&gt;h&lt;/sub&gt;=1.65 au) 70 days before perihelion. At that time, the water-production rate reached (1,53&amp;#177;0,04)10&lt;sup&gt;28 &lt;/sup&gt;molecules/s and the A(0)fp reached (1096&amp;#177;14) cm in the red filter. After that, the comet began to fade and disintegrated into several fragments.&lt;/p&gt;


1991 ◽  
Vol 126 ◽  
pp. 21-28
Author(s):  
E. Grün ◽  
H. Fechtig ◽  
M. S. Hanner ◽  
J. Kissel ◽  
B.-A. Lindblad ◽  
...  

AbstractIn-situ measurements of interplanetary dust have been performed in the heliocentric distance range from 0.3 AU out to 18 AU. Due to their small sensitive areas (typically 0.01 m2for the highly sensitive impact ionization sensors) or low mass sensitivities (≥10−9g of the large area penetration detectors) previous instruments recorded only a few 100 impacts during their lifetimes. Nevertheless, important information on the distribution of dust in interplanetary space has been obtained between 0.3 and 18 AU distance from the Sun. The Galileo dust detector combines the high mass sensitivity of impact ionization detectors (10−15g) together with a large sensitive area (0.1 m2). The Galileo spacecraft was launched on October 18, 1989 and is on its solar system cruise towards Jupiter. Initial measurements of the dust flux from 0.7 to 1.2 AU are presented.


Sign in / Sign up

Export Citation Format

Share Document