scholarly journals Societal breakdown as an emergent property of large-scale behavioural models of land use change

2019 ◽  
Author(s):  
Calum Brown ◽  
Bumsuk Seo ◽  
Mark Rounsevell

Abstract. Human land use has placed enormous pressure on natural resources and ecosystems worldwide, and may even prompt socio-ecological collapses under some circumstances. Efforts to avoid such collapses are hampered by a lack of knowledge about when they may occur and how they may be prevented. Computational models that illuminate potential future developments in the land system are invaluable tools in this context. While such models are widely used to project biophysical changes, they are currently less able to explore the social dynamics that will be key aspects of future global change. As a result, strategies for navigating a hazardous future may suffer from blind spots at which individual, social and political behaviours divert the land system away from predicted pathways. We apply CRAFTY-EU, an agent-based model of the European land system, in order to investigate the effects of human-behavioural aspects of land management at the continental-scale. We explore a range of potential futures using climatic and socio-economic scenarios, and present a coherent set of cross-sectoral projections without imposed equilibria or optimisation. These projections include various behavioural responses to scenarios including non-economic motivations, aversion to change, and heterogeneity in decision-making. We find that social factors and behavioural responses have dramatic impacts on simulated dynamics, and can contribute to a breakdown of the land system's essential functions in which shortfalls in food production of up to 56 % emerge. These impacts are largely distinct from, and at least as large as, those of projected climatic change. We conclude that the socio-economic aspects of future scenarios require far more detailed and varied treatment. In particular, the extent of economic irrationality at individual and aggregate scales may determine the nature of land system development, with established pathways being highly vulnerable to deviation from this theoretical optimum.

2019 ◽  
Vol 10 (4) ◽  
pp. 809-845 ◽  
Author(s):  
Calum Brown ◽  
Bumsuk Seo ◽  
Mark Rounsevell

Abstract. Human land use has placed enormous pressure on natural resources and ecosystems worldwide and may even prompt socio-ecological collapses under some circumstances. Efforts to avoid such collapses are hampered by a lack of knowledge about when they may occur and how they may be prevented. Computational models that illuminate potential future developments in the land system are invaluable tools in this context. While such models are widely used to project biophysical changes, they are currently less able to explore the social dynamics that will be key aspects of future global change. As a result, strategies for navigating a hazardous future may suffer from “blind spots” at which individual, social and political behaviours divert the land system away from predicted pathways. We apply CRAFTY-EU, an agent-based model of the European land system, in order to investigate the effects of human behavioural aspects of land management at the continental scale. We explore a range of potential futures using climatic and socio-economic scenarios and present a coherent set of cross-sectoral projections without imposed equilibria or optimisation. These projections include various behavioural responses to scenarios including non-economic motivations, aversion to change and heterogeneity in decision-making. We find that social factors and behavioural responses have dramatic impacts on simulated dynamics and can contribute to a breakdown of the land system's essential functions in which shortfalls in food production of up to 56 % emerge. These impacts are largely distinct from, and at least as large as, those of projected climatic change. We conclude that the socio-economic aspects of future scenarios require far more detailed and varied treatment. In particular, deviation from simple economic rationality at individual and aggregate scales may profoundly alter the nature of land system development and the achievability of policy goals.


2019 ◽  
Vol 11 (17) ◽  
pp. 1980
Author(s):  
Benjamin Robb ◽  
Qiongyu Huang ◽  
Joseph Sexton ◽  
David Stoner ◽  
Peter Leimgruber

Migration is a valuable life history strategy for many species because it enables individuals to exploit spatially and temporally variable resources. Globally, the prevalence of species’ migratory behavior is decreasing as individuals forgo migration to remain resident year-round, an effect hypothesized to result from anthropogenic changes to landscape dynamics. Efforts to conserve and restore migrations require an understanding of the ecological characteristics driving the behavioral tradeoff between migration and residence. We identified migratory and resident behaviors of 42 mule deer (Odocoileus hemionus) based on GPS locations and correlated their locations to remotely sensed indicators of forage quality, land cover, snow cover, and human land use. The model classified mule deer seasonal migratory and resident niches with an overall accuracy of 97.8% and cross-validated accuracy of 81.2%. The distance to development was the most important variable in discriminating in which environments these behaviors occur, with resident niche space most often closer to developed areas than migratory niches. Additionally, snow cover in December was important for discriminating summer migratory niches. This approach demonstrates the utility of niche analysis based on remotely sensed environmental datasets and provides empirical evidence of human land use impacts on large-scale wildlife migrations.


2018 ◽  
pp. 27-32
Author(s):  
William G Lee

The high-country and dryland zone of the South Island of New Zealand includes the Southern Alpsand eastern mountains and basins. Formed by post-Pliocene tectonic, glacial and alluvial processes, theseareas contain a range of landforms across extreme climatic gradients. Diverse habitats support plantsand animals which have a distinctive and long natural history. New Zealand’s short (c. 700 years) historyof human land use has been highly disruptive for indigenous biodiversity. We have misunderstood theeco-evolutionary vulnerabilities of the native biota, the extent of environmental limits, and the impacts ofintroduced weeds and pests. Recent large-scale capture of water and addition of nutrients for agriculture areexcluding indigenous biodiversity in many ecosystems. Predicted climate change and competition for waterresources will exacerbate agricultural impacts, but the remaining indigenous biodiversity can be resilient ifrepresentative areas are protected.


2019 ◽  
Author(s):  
Adriaan J. Teuling ◽  
Emile de Badts ◽  
Femke A. Jansen ◽  
Richard Fuchs ◽  
Joost Buitink ◽  
...  

Abstract. Since the 1950s, Europe has seen large shifts in climate and land cover. Previous assessments of past and future changes in evapotranspiration or streamflow have either focussed on land use/cover or climate contributions, or have focussed on individual catchments under specific climate conditions. Here, we aim to understand how decadal changes in climate (e.g., precipitation, temperature) and land use (e.g., de-/afforestation, urbanization) have impacted the amount and distribution of water resources availability across Europe since the 1950s. To this end, we simulate the distribution of green and blue water fluxes at high-resolution (1 × 1 km) by combining (a) a steady-state Budyko model for water balance partitioning constrained by long-term (lysimeter) observations across different land-use types, (b) a novel decadal high-resolution historical land use reconstruction, and (c) gridded observations of key meteorological variables. The continental-scale patterns in the simulations agree well with coarser-scale observation-based estimates of evapotranspiration, and also with observed changes in streamflow from small basins across Europe. We find that strong shifts in the continental-scale patterns of evapotranspiration and streamflow have occured from 1950 to 2010. In Sweden, for example, increased precipitation dominates effects of large scale re- and afforestation leading to increases in both streamflow and evapotranspiration. In most of the Mediterrenean, decreased precipitation combines with increased forest cover and potential evapotranspiration to reduce streamflow. In spite of local and regional scale complexity, the Europe-wide net contribution of land use, precipitation and potential evapotranspiration changes to changes in ET is similar with around ~ 40 km3/y, equivalent to the discharge of a large river. For streamflow, changes in precipitation dominate land use and potential evapotranspiration contributions with ~ 90 km3/y compared to ~ 45 km3/y. Locally, increased forest cover and urbanisation have lead to significant decreases and increases of available streamflow.


Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Jinfeng Ma ◽  
Ruonan Li ◽  
Yanzheng Yang ◽  
Yue Hai ◽  
Tian Han ◽  
...  

Large-scale human land-use management is an effective method for ecosystem restoration and wind erosion prevention service (WEPS) improvement. However, the spatial differences of driving factors and the feedback in subsequent management have received less attention. This study analysed the temporal and spatial changes in the WEPS in northern China from 2000 to 2015, classified the driving modes between the WEPS and environmental factors, distinguished the main driving factors, and proposed suggestions for successive projects. The results showed that, compared with 2000, the amount of WEPSs in 2015 increased by 12.60%, and forest and grassland in the WEPS-increased area was 1.34 times that in the declining area. There were east–west differences in the driving mechanism of WEPS improvement. In addition to climatic and topographic factors, the western division was mainly affected by changes in vegetation quality, whereas the eastern division was affected by the combined influence of vegetation quality and quantity. This study shows the necessity of land-use management and project zoning policies, and provides a reference for policy formulation and management of large-scale ecological projects.


2021 ◽  
Vol 118 (17) ◽  
pp. e2020935118
Author(s):  
Lars A. Brudvig ◽  
Nash E. Turley ◽  
Savannah L. Bartel ◽  
Lukas Bell-Dereske ◽  
Sabrie Breland ◽  
...  

Ecological restoration is a global priority, with potential to reverse biodiversity declines and promote ecosystem functioning. Yet, successful restoration is challenged by lingering legacies of past land-use activities, which are pervasive on lands available for restoration. Although legacies can persist for centuries following cessation of human land uses such as agriculture, we currently lack understanding of how land-use legacies affect entire ecosystems, how they influence restoration outcomes, or whether restoration can mitigate legacy effects. Using a large-scale experiment, we evaluated how restoration by tree thinning and land-use legacies from prior cultivation and subsequent conversion to pine plantations affect fire-suppressed longleaf pine savannas. We evaluated 45 ecological properties across four categories: 1) abiotic attributes, 2) organism abundances, 3) species diversity, and 4) species interactions. The effects of restoration and land-use legacies were pervasive, shaping all categories of properties, with restoration effects roughly twice the magnitude of legacy effects. Restoration effects were of comparable magnitude in savannas with and without a history of intensive human land use; however, restoration did not mitigate numerous legacy effects present prior to restoration. As a result, savannas with a history of intensive human land use supported altered properties, especially related to soils, even after restoration. The signature of past human land-use activities can be remarkably persistent in the face of intensive restoration, influencing the outcome of restoration across diverse ecological properties. Understanding and mitigating land-use legacies will maximize the potential to restore degraded ecosystems.


2007 ◽  
Vol 362 (1478) ◽  
pp. 209-218 ◽  
Author(s):  
Mark B Bush ◽  
Miles R Silman ◽  
Mauro B de Toledo ◽  
Claudia Listopad ◽  
William D Gosling ◽  
...  

While large-scale pre-Columbian human occupation and ecological disturbance have been demonstrated close to major Amazonian waterways, less is known of sites in terra firme settings. Palaeoecological analyses of two lake districts in central and western Amazonia reveal long histories of occupation and land use. At both locations, human activity was centred on one of the lakes, while the others were either lightly used or unused. These analyses indicate that the scale of human impacts in these terra firme settings is localized and probably strongly influenced by the presence of a permanent open-water body. Evidence is found of forest clearance and cultivation of maize and manioc. These data are directly relevant to the resilience of Amazonian conservation, as they do not support the contention that all of Amazonia is a ‘built landscape’ and therefore a product of past human land use.


2021 ◽  
Author(s):  
Yue Dou ◽  
Francesca Cosentino ◽  
Ziga Malek ◽  
Luigi Maiorano ◽  
Wilfried Thuiller ◽  
...  

Abstract Context While land use change is the main driver of biodiversity loss, most biodiversity assessments either ignore it or use a simple land cover representation. Land cover representations lack the representation of land use and landscape characteristics relevant to biodiversity modeling. Objectives We developed a comprehensive and high-resolution representation of European land systems on a 1-km2 grid integrating important land use and landscape characteristics. Methods Combining the recent data on land cover and land use intensities, we applied an expert-based hierarchical classification approach and identified land systems that are common in Europe and meaningful for studying biodiversity. We tested the benefits of using this map as compared to land cover information to predict the distribution of bird species having different vulnerability to landscape and land use change. Results Next to landscapes dominated by one land cover, mosaic landscapes cover 14.5% of European terrestrial surface. When using the land system map, species distribution models demonstrate substantially higher predictive ability (up to 19% higher) as compared to models based on land cover maps. Our map consistently contributes more to the spatial distribution of the tested species than the use of land cover data (3.9 to 39.1% higher). Conclusions A land systems classification including essential aspects of landscape and land management into a consistent classification can improve upon traditional land cover maps in large-scale biodiversity assessment. The classification balances data availability at continental scale with vital information needs for various ecological studies.


2020 ◽  
Vol 27 ◽  
Author(s):  
Zaheer Ullah Khan ◽  
Dechang Pi

Background: S-sulfenylation (S-sulphenylation, or sulfenic acid) proteins, are special kinds of post-translation modification, which plays an important role in various physiological and pathological processes such as cytokine signaling, transcriptional regulation, and apoptosis. Despite these aforementioned significances, and by complementing existing wet methods, several computational models have been developed for sulfenylation cysteine sites prediction. However, the performance of these models was not satisfactory due to inefficient feature schemes, severe imbalance issues, and lack of an intelligent learning engine. Objective: In this study, our motivation is to establish a strong and novel computational predictor for discrimination of sulfenylation and non-sulfenylation sites. Methods: In this study, we report an innovative bioinformatics feature encoding tool, named DeepSSPred, in which, resulting encoded features is obtained via n-segmented hybrid feature, and then the resampling technique called synthetic minority oversampling was employed to cope with the severe imbalance issue between SC-sites (minority class) and non-SC sites (majority class). State of the art 2DConvolutional Neural Network was employed over rigorous 10-fold jackknife cross-validation technique for model validation and authentication. Results: Following the proposed framework, with a strong discrete presentation of feature space, machine learning engine, and unbiased presentation of the underline training data yielded into an excellent model that outperforms with all existing established studies. The proposed approach is 6% higher in terms of MCC from the first best. On an independent dataset, the existing first best study failed to provide sufficient details. The model obtained an increase of 7.5% in accuracy, 1.22% in Sn, 12.91% in Sp and 13.12% in MCC on the training data and12.13% of ACC, 27.25% in Sn, 2.25% in Sp, and 30.37% in MCC on an independent dataset in comparison with 2nd best method. These empirical analyses show the superlative performance of the proposed model over both training and Independent dataset in comparison with existing literature studies. Conclusion : In this research, we have developed a novel sequence-based automated predictor for SC-sites, called DeepSSPred. The empirical simulations outcomes with a training dataset and independent validation dataset have revealed the efficacy of the proposed theoretical model. The good performance of DeepSSPred is due to several reasons, such as novel discriminative feature encoding schemes, SMOTE technique, and careful construction of the prediction model through the tuned 2D-CNN classifier. We believe that our research work will provide a potential insight into a further prediction of S-sulfenylation characteristics and functionalities. Thus, we hope that our developed predictor will significantly helpful for large scale discrimination of unknown SC-sites in particular and designing new pharmaceutical drugs in general.


Sign in / Sign up

Export Citation Format

Share Document