scholarly journals Polynomial cointegration tests of anthropogenic impact on global warming

2012 ◽  
Vol 3 (2) ◽  
pp. 561-596 ◽  
Author(s):  
M. Beenstock ◽  
Y. Reingewertz ◽  
N. Paldor

Abstract. We use statistical methods for nonstationary time series to test the anthropogenic interpretation of global warming (AGW), according to which an increase in atmospheric greenhouse gas concentrations raised global temperature in the 20th century. Specifically, the methodology of polynomial cointegration is used to test AGW since during the observation period (1880–2007) global temperature and solar irradiance are stationary in 1st differences whereas greenhouse gases and aerosol forcings are stationary in 2nd differences. We show that although these anthropogenic forcings share a common stochastic trend, this trend is empirically independent of the stochastic trend in temperature and solar irradiance. Therefore, greenhouse gas forcing, aerosols, solar irradiance and global temperature are not polynomially cointegrated. This implies that recent global warming is not statistically significantly related to anthropogenic forcing. On the other hand, we find that greenhouse gas forcing might have had a temporary effect on global temperature.

2012 ◽  
Vol 3 (2) ◽  
pp. 173-188 ◽  
Author(s):  
M. Beenstock ◽  
Y. Reingewertz ◽  
N. Paldor

Abstract. We use statistical methods for nonstationary time series to test the anthropogenic interpretation of global warming (AGW), according to which an increase in atmospheric greenhouse gas concentrations raised global temperature in the 20th century. Specifically, the methodology of polynomial cointegration is used to test AGW since during the observation period (1880–2007) global temperature and solar irradiance are stationary in 1st differences, whereas greenhouse gas and aerosol forcings are stationary in 2nd differences. We show that although these anthropogenic forcings share a common stochastic trend, this trend is empirically independent of the stochastic trend in temperature and solar irradiance. Therefore, greenhouse gas forcing, aerosols, solar irradiance and global temperature are not polynomially cointegrated, and the perceived relationship between these variables is a spurious regression phenomenon. On the other hand, we find that greenhouse gas forcings might have had a temporary effect on global temperature.


2013 ◽  
Vol 4 (1) ◽  
pp. 219-233
Author(s):  
D. F. Hendry ◽  
F. Pretis

Abstract. We demonstrate major flaws in the statistical analysis of Beenstock et al. (2012), discrediting their initial claims as to the different degrees of integrability of CO2 and temperature.


2015 ◽  
Vol 15 (22) ◽  
pp. 12681-12703 ◽  
Author(s):  
D. M. Westervelt ◽  
L. W. Horowitz ◽  
V. Naik ◽  
J.-C. Golaz ◽  
D. L. Mauzerall

Abstract. It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. For instance, global emissions of aerosols and their precursors are projected to decrease by as much as 80 % by the year 2100, according to the four Representative Concentration Pathway (RCP) scenarios. The removal of aerosols will cause unintended climate consequences, including an unmasking of global warming from long-lived greenhouse gases. We use the Geophysical Fluid Dynamics Laboratory Coupled Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without the aerosol emission changes projected by each of the RCPs in order to isolate the radiative forcing and climate response resulting from the aerosol reductions. We find that the projected global radiative forcing and climate response due to aerosol decreases do not vary significantly across the four RCPs by 2100, although there is some mid-century variation, especially in cloud droplet effective radius, that closely follows the RCP emissions and energy consumption projections. Up to 1 W m−2 of radiative forcing may be unmasked globally from 2005 to 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm day−1. However, when using a version of CM3 with reduced present-day aerosol radiative forcing (−1.0 W m−2), the global temperature increase for RCP8.5 is about 0.5 K, with similar magnitude decreases in other climate response parameters as well. Regionally and locally, climate impacts can be much larger than the global mean, with a 2.1 K warming projected over China, Japan, and Korea due to the reduced aerosol emissions in RCP8.5, as well as nearly a 0.2 mm day−1 precipitation increase, a 7 g m−2 LWP decrease, and a 2 μm increase in cloud droplet effective radius. Future aerosol decreases could be responsible for 30–40 % of total climate warming (or 10–20 % with weaker aerosol forcing) by 2100 in East Asia, even under the high greenhouse gas emissions scenario (RCP8.5). The expected unmasking of global warming caused by aerosol reductions will require more aggressive greenhouse gas mitigation policies than anticipated in order to meet desired climate targets.


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2021 ◽  
Vol 35 (2) ◽  
pp. 225-237
Author(s):  
Feng Gao ◽  
Tongwen Wu ◽  
Jie Zhang ◽  
Aixue Hu ◽  
Gerald A. Meehl

2021 ◽  
Author(s):  
Alaa F. Eftaiha ◽  
Abdussalam K. Qaroush ◽  
Areej K. Hasan ◽  
Khaleel I. Assaf ◽  
Feda'a Al-Qaisi ◽  
...  

CO2 is the most influential greenhouse gas with its drastic effects all over the world. Meanwhile, global warming is considered as a hot topic to different slices of scientists dealing...


Sign in / Sign up

Export Citation Format

Share Document