scholarly journals Global CO<sub>2</sub> emissions from cement production, 1928–2018

2019 ◽  
Vol 11 (4) ◽  
pp. 1675-1710 ◽  
Author(s):  
Robbie M. Andrew

Abstract. Global production of cement has grown very rapidly in recent years, and, after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The availability of the required data for estimating emissions from global cement production is poor, and it has been recognised that some global estimates are significantly inflated. This article assembles a large variety of available datasets, prioritising official data and emission factors, including estimates submitted to the UN Framework Convention on Climate Change (UNFCCC), plus new estimates for China and India, to present a new analysis of global process emissions from cement production. Global process emissions in 2018 were 1.50±0.12 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2018 were 38.3±2.4 Gt CO2, 71 % of which have occurred since 1990. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831454 (Andrew, 2019).

2019 ◽  
Author(s):  
Robbie M. Andrew

Abstract. Global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The availability of the required data for estimating emissions from global cement production is poor, and it has been recognised that some global estimates are significantly inflated. This article assembles a large variety of available datasets, prioritising official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. Global process emissions in 2018 were 1.50 ± 0.12 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2018 were 38.3 ± 2.4 Gt CO2, 71 % of which have occurred since 1990. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831454 (Andrew, 2019).


2018 ◽  
Author(s):  
Robbie M. Andrew

Abstract. Global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets, prioritising official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2017 were 1.48 ± 0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2017 were 36.9 ± 2.3 Gt CO2, 70 % of which have occurred since 1990. Emissions in 2016 were 28 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831454.


2018 ◽  
Vol 10 (4) ◽  
pp. 2213-2239 ◽  
Author(s):  
Robbie M. Andrew

Abstract. Global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The availability of the required data for estimating emissions from global cement production is poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets, prioritising official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2017 were 1.48±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2017 were 36.9±2.3 Gt CO2, 70 % of which have occurred since 1990. Emissions in 2016 were 28 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831454.


2018 ◽  
Vol 10 (1) ◽  
pp. 195-217 ◽  
Author(s):  
Robbie M. Andrew

Abstract. The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831455.


2017 ◽  
Author(s):  
Robbie M. Andrew

Abstract. Global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets, prioritising official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global emissions in 2016 were 1.45 ± 0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions to 2016 were 39.3 ± 2.6 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831455.


Author(s):  
Filippo Giorgi

This contribution presents the various pieces of evidence which bring the scientific community to conclude that global warming is happening and it is mostly due to anthropogenic emissions of greenhouse gases, mainly carbon dioxide and methane, deriving from the use of fossil fuels and some intensive agricultural practices. The main climatic changes associated with global warming are then discussed, along with the main model-derived future climate scenarios and the impacts that climate change can have on different socioeconomic sectors. Finally, the response policies to global warming are described, and in particular the concepts of adaptation and mitigaziotn (reduction of greenhouse gas emissions).


2016 ◽  
Vol 4 (2) ◽  
pp. 1 ◽  
Author(s):  
Jan Erik Lane

The implementation process of the global accord on climate change has to start now in order to be implementable. The decentralized process if implementation should take the lessons from the theory of policy implementation into account (Pressman & Wildavsky, 1984; Wildavsky, 1987). The dependency upon various forms of coal (wood, stone) and fossil fuels is so large in the Third World that only massive financial assistance from the First World can mean a difference for the COP21 objectives. And many advanced countries (except Uruguay) also need to make great changes to comply with COP21.


Author(s):  
Henry Shue

We now know that anthropogenic emissions of greenhouse gases (GHGs) are interfering with the planet’s climate system in ways that are likely to lead to dangerous threats to human life (not to mention nonhuman life) and that are likely to compromise the fundamental well-being of people who live at a later time. We have not understood this for very long—for most of my life, for example, we were basically clueless about climate. Our recently acquired knowledge means that decisions about climate policy are no longer properly understood as decisions entirely about preferences of ours but also crucially about the vulnerabilities of others—not about the question “How much would we like to spend to slow climate change?” but about “How little are we in decency permitted to spend in light of the difficulties and the risks of difficulties to which we are likely otherwise to expose people, people already living and people yet to live?” For we now realize that the carbon-centered energy regime under which we live is modifying the human habitat, creating a more dangerous world for the living and for posterity. Our technologically primitive energy regime based on setting fire to fossil fuels is storing up, in the planet’s radically altering atmosphere, sources of added threat for people who are vulnerable to us and cannot protect themselves against the consequences of our decisions for the circumstances in which they will have to live—most notably, whichever people inherit the worn-and-torn planet we vacate. As we academics love to note, matters are, of course, complicated. Let’s look at a few of the complications, concentrating on some concerning risk. Mostly, we are talking about risks because, although we know strikingly much more about the planetary climate system than we did a generation ago, much is still unknown and unpredictable. I will offer three comments about risk. The third comment is the crucial one and makes a strong claim about a specific type of risk, with three distinctive features.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 476
Author(s):  
Kevin J. Warner ◽  
Glenn A. Jones

China and India are not only the two most populous nations on Earth, they are also two of the most rapidly growing economies. Historically, economic and social development have been subsidized by cheap and abundant fossil-fuels. Climate change from fossil-fuel emissions has resulted in the need to reduce fossil-fuel emissions in order to avoid catastrophic warming. If climate goals are achieved, China and India will have been the first major economies to develop via renewable energy sources. In this article, we examine the factors of projected population growth, available fossil-fuel reserves, and renewable energy installations required to develop scenarios in which both China and India may increase per capita energy consumption while remaining on trach to meet ambitious climate goals. Here, we show that China and India will have to expand their renewable energy infrastructure at unprecedented rates in order to support both population growth and development goals. In the larger scope of the literature, we recommend community-based approaches to microgrid and cookstove development in both China and India.


Nanoscale ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 2507-2514 ◽  
Author(s):  
Yipeng Bao ◽  
Jin Wang ◽  
Qi Wang ◽  
Xiaofeng Cui ◽  
Ran Long ◽  
...  

Harvesting solar energy to convert carbon dioxide (CO2) into fossil fuels shows great promise to solve the current global problems of energy crisis and climate change.


Sign in / Sign up

Export Citation Format

Share Document