scholarly journals A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States

2020 ◽  
Vol 12 (1) ◽  
pp. 357-371 ◽  
Author(s):  
Xuecao Li ◽  
Yuyu Zhou ◽  
Zhengyuan Zhu ◽  
Wenting Cao

Abstract. Dynamics of the urban extent at fine spatial and temporal resolutions over large areas are crucial for developing urban growth models and achieving sustainable development goals. However, there are limited practices of mapping urban dynamics with these two merits combined. In this study, we proposed a new method to map urban dynamics from Landsat time series data using the Google Earth Engine (GEE) platform and developed a national dataset of annual urban extent (1985–2015) at a fine spatial resolution (30 m) in the conterminous United States (US). First, we derived the change information of urbanized years in four periods that were determined from the National Land Cover Database (NLCD), using a temporal segmentation approach. Then, we classified urban extents in the beginning (1985) and ending (2015) years at the cluster level through the implementation of a change vector analysis (CVA)-based approach. We also developed a hierarchical strategy to apply the CVA-based approach due to the spatially explicit urban sprawl over large areas. The overall accuracy of mapped urbanized years is around 90 % with the 1-year tolerance strategy. The mapped urbanized areas in the beginning and ending years are reliable, with overall accuracies of 96 % and 88 %, respectively. Our results reveal that the total urban area increased by about 20 % during the period of 1985–2015 in the US, and the annual urban area growth is not linear over the years. Overall, the growth pattern of urban extent in most coastal states is plateaued over the past three decades while the states in the Midwestern US show an accelerated growth pattern. The derived annual urban extents are of great use for relevant urban studies such as urban area projection and urban sprawl modeling over large areas. Moreover, the proposed mapping framework is transferable for developing annual dynamics of urban extent in other regions and even globally. The data are available at https://doi.org/10.6084/m9.figshare.8190920.v2 (Li et al., 2019c).

2019 ◽  
Author(s):  
Xuecao Li ◽  
Yuyu Zhou ◽  
Zhengyuan Zhu ◽  
Wenting Cao

Abstract. Dynamics of the urban extent at fine spatial and temporal resolutions over large areas are crucial for developing urban growth models and achieving sustainable development goals. However, there are limited practices of mapping urban dynamics with these two merits combined. In this study, we proposed a new method to map urban dynamics from Landsat time series data using the Google Earth Engine (GEE) platform and developed a national dataset of annual urban extent (1985–2015) at a fine spatial resolution (30 m) in the conterminous United States (US). First, we derived the change information of urbanized years in four periods that were determined from the National Land Cover Database (NLCD), using a temporal segmentation approach. Then, we classified urban extents in the beginning (1985) and ending (2015) years at the cluster level through implementing a change vector analysis (CVA) based approach. We developed a hierarchical strategy to apply the CVA based approach due to the spatially explicit urban sprawl over large areas. The overall accuracy of mapped urbanized years is around 90 % with the one-year tolerance strategy. The mapped urbanized areas in the beginning and ending years are reliable, with overall accuracies of 96 % and 88 %, respectively. Our results reveal that the total urban area increased by about 20 % during the period 1985–2015, and the annual urban area growth is not linear over the years. Overall, the growth pattern of urban extent in most coastal states is plateaued over the past three decades while the states in the Midwestern US show an accelerated growth pattern. The derived annual urban extents are of great use for relevant urban studies such as urban area projection and urban sprawl modeling in large areas. Moreover, the proposed mapping framework is transferable for developing annual dynamics of urban extent in other regions and even globally. The data are available at https://doi.org/10.6084/m9.figshare.8190920.v2 (Li et al., 2019b).


SAGE Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 215824402110074
Author(s):  
Kamyar Fuladlu ◽  
Müge Riza ◽  
Mustafa Ilkan

Monitoring urban sprawl is a controversial topic among scholars. Many studies have tried to employ various methods for monitoring urban sprawl in cases of North American and Northern and Western European cities. Although numerous methods have been applied with great success in various developed countries, they are predominantly impractical for cases of developing Mediterranean European cities that lack reliable census data. Besides, the complexity of the methods made them difficult to perform in underfunded situations. Therefore, this study aims to develop a new multidimensional method that researchers and planners can apply readily in developing Mediterranean European cities. The new method was tested in the Famagusta region of Northern Cyprus, which has been experiencing unplanned growth for the past half-century. In support of this proposal, a detailed review of the existing literature is presented with an emphasis on urban sprawl characteristics. Four characteristics were chosen to monitor urban sprawl’s development in the Famagusta region. The method was structured based on a time-series (2001, 2006, 2011, and 2016) dataset that used remote sensing data and geographical information systems to monitor the urban sprawl. Based on the findings, the Famagusta region experienced rapid growth during the last 15 years. The lack of a masterplan resulted in the uncontrolled expansion of the city in the exurban areas. The development configuration was polycentric and linear in form with single-use composition. Together, the expansion and configuration manifested as more built-up area, scattered development, and increased automobile dependency.


2020 ◽  
Vol 12 (19) ◽  
pp. 3120
Author(s):  
Luojia Hu ◽  
Nan Xu ◽  
Jian Liang ◽  
Zhichao Li ◽  
Luzhen Chen ◽  
...  

A high resolution mangrove map (e.g., 10-m), including mangrove patches with small size, is urgently needed for mangrove protection and ecosystem function estimation, because more small mangrove patches have disappeared with influence of human disturbance and sea-level rise. However, recent national-scale mangrove forest maps are mainly derived from 30-m Landsat imagery, and their spatial resolution is relatively coarse to accurately characterize the extent of mangroves, especially those with small size. Now, Sentinel imagery with 10-m resolution provides an opportunity for generating high-resolution mangrove maps containing these small mangrove patches. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and/or Sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features of random forest to classify mangroves in China. We found that Sentinel-2 (F1-Score of 0.895) is more effective than Sentinel-1 (F1-score of 0.88) in mangrove extraction, and a combination of SAR and MSI imagery can get the best accuracy (F1-score of 0.94). The 10-m mangrove map was derived by combining SAR and MSI data, which identified 20003 ha mangroves in China, and the area of small mangrove patches (<1 ha) is 1741 ha, occupying 8.7% of the whole mangrove area. At the province level, Guangdong has the largest area (819 ha) of small mangrove patches, and in Fujian, the percentage of small mangrove patches is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest map is expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of the mangrove forest.


2019 ◽  
Vol 11 (24) ◽  
pp. 3023 ◽  
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Xiao Zhang ◽  
Jiangning Yang ◽  
Xidong Chen ◽  
...  

The Google Earth Engine (GEE) has emerged as an essential cloud-based platform for land-cover classification as it provides massive amounts of multi-source satellite data and high-performance computation service. This paper proposed an automatic land-cover classification method using time-series Landsat data on the GEE cloud-based platform. The Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover products (MCD12Q1.006) with the International Geosphere–Biosphere Program (IGBP) classification scheme were used to provide accurate training samples using the rules of pixel filtering and spectral filtering, which resulted in an overall accuracy (OA) of 99.2%. Two types of spectral–temporal features (percentile composited features and median composited monthly features) generated from all available Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data from the year 2010 ± 1 were used as input features to a Random Forest (RF) classifier for land-cover classification. The results showed that the monthly features outperformed the percentile features, giving an average OA of 80% against 77%. In addition, the monthly features composited using the median outperformed those composited using the maximum Normalized Difference Vegetation Index (NDVI) with an average OA of 80% against 78%. Therefore, the proposed method is able to generate accurate land-cover mapping automatically based on the GEE cloud-based platform, which is promising for regional and global land-cover mapping.


2020 ◽  
Vol 12 (17) ◽  
pp. 2735 ◽  
Author(s):  
Carlos M. Souza ◽  
Julia Z. Shimbo ◽  
Marcos R. Rosa ◽  
Leandro L. Parente ◽  
Ane A. Alencar ◽  
...  

Brazil has a monitoring system to track annual forest conversion in the Amazon and most recently to monitor the Cerrado biome. However, there is still a gap of annual land use and land cover (LULC) information in all Brazilian biomes in the country. Existing countrywide efforts to map land use and land cover lack regularly updates and high spatial resolution time-series data to better understand historical land use and land cover dynamics, and the subsequent impacts in the country biomes. In this study, we described a novel approach and the results achieved by a multi-disciplinary network called MapBiomas to reconstruct annual land use and land cover information between 1985 and 2017 for Brazil, based on random forest applied to Landsat archive using Google Earth Engine. We mapped five major classes: forest, non-forest natural formation, farming, non-vegetated areas, and water. These classes were broken into two sub-classification levels leading to the most comprehensive and detailed mapping for the country at a 30 m pixel resolution. The average overall accuracy of the land use and land cover time-series, based on a stratified random sample of 75,000 pixel locations, was 89% ranging from 73 to 95% in the biomes. The 33 years of LULC change data series revealed that Brazil lost 71 Mha of natural vegetation, mostly to cattle ranching and agriculture activities. Pasture expanded by 46% from 1985 to 2017, and agriculture by 172%, mostly replacing old pasture fields. We also identified that 86 Mha of the converted native vegetation was undergoing some level of regrowth. Several applications of the MapBiomas dataset are underway, suggesting that reconstructing historical land use and land cover change maps is useful for advancing the science and to guide social, economic and environmental policy decision-making processes in Brazil.


2009 ◽  
Vol 38 (2) ◽  
pp. 213-228 ◽  
Author(s):  
Jungho Baek ◽  
Won W. Koo ◽  
Kranti Mulik

This study examines the dynamic effects of changes in exchange rates on bilateral trade of agricultural products between the United States and its 15 major trading partners. Special attention is paid to investigate whether or not the J-curve hypothesis holds for U.S. agricultural trade. For this purpose, an autoregressive distributed lag (ARDL) approach to cointegration is applied to quarterly time-series data from 1989 and 2007. Results show that the exchange rate plays a crucial role in determining the short- and long-run behavior of U.S. agricultural trade. However, we find little evidence of the J-curve phenomenon for U.S. agricultural products with the United States’ major trading partners.


2002 ◽  
Vol 222 (5) ◽  
Author(s):  
Antje Mertens

SummaryIt is commonly known that every economy is faced with the problem of unevenly distributed labour demand changes across industries, occupations and regions. In competitive labour markets flexible wages and the mobility of labour would lead to a new equilibrium distribution of wages and employment. Regional or industrial unemployment dispersion in Germany is often blamed on a lack of wage adjustments and the lack of labour mobility when economic fortunes are not distributed evenly, but this hypothesis is hardly ever tested. This paper asks how wage reactions in Germany compare with responses in the United States using individual level data. As a first step labour demand shocks are estimated from employment time series data using deterministic detrending and the Hodrick-Prescott filter. These are then included in typical wage regressions based on micro data. The results propose that German labour markets are not as inflexible as simple evidence might suggest. Although wages are regionally only flexible in the United States, wages are found to react to industrial labour demand shocks in both countries. Especially for more experienced and therefore less mobile groups in the German labour market wages react to industrial labour demand shocks.


2021 ◽  
Author(s):  
Jie Yang ◽  
Xin Huang

Abstract. Land cover (LC) determines the energy exchange, water and carbon cycle between Earth's spheres. Accurate LC information is a fundamental parameter for the environment and climate studies. Considering that the LC in China has been altered dramatically with the economic development in the past few decades, sequential and fine-scale LC monitoring is in urgent need. However, currently, fine-resolution annual LC dataset produced by the observational images is generally unavailable for China due to the lack of sufficient training samples and computational capabilities. To deal with this issue, we produced the first Landsat-derived annual China Land Cover Dataset (CLCD) on the Google Earth Engine (GEE) platform, which contains 30 m annual LC and its dynamics of China from 1990 to 2019. We first collected the training samples by combining stable samples extracted from China’s Land-Use/Cover Datasets (CLUD), and visually-interpreted samples from satellite time-series data, Google Earth and Google Map. Using 335,709 Landsat images on the GEE, several temporal metrics were constructed and fed to the random forest classifier to obtain classification results. We then proposed a post-processing method incorporating spatial-temporal filtering and logical reasoning to further improve the spatial-temporal consistency of CLCD. Finally, the overall accuracy of CLCD reached 79.31 % based on 5,463 visually-interpreted samples. A further assessment based on 5,131 third-party test samples showed that the overall accuracy of CLCD outperforms that of MCD12Q1, ESACCI_LC, FROM_GLC, and GlobaLand30. Besides, we intercompared the CLCD with several Landsat-derived thematic products, which exhibited good consistencies with the Global Forest Change, the Global Surface Water, and three impervious surface products. Based on the CLCD, the trends and patterns of China’s LC changes during 1985 and 2019 were revealed, such as expansion of impervious surface (+148.71 %) and water (+18.39 %), decrease of cropland (−4.85 %) and grassland (−3.29 %), increase of forest (+4.34 %). In general, CLCD reflected the rapid urbanization and a series of ecological projects (e.g., Gain for Green) in China and revealed the anthropogenic implications on LC under the condition of climate change, signifying its potential application in the global change research. The CLCD dataset introduced in this article is freely available at http://doi.org/10.5281/zenodo.4417810 (Yang and Huang, 2021).


Sign in / Sign up

Export Citation Format

Share Document