scholarly journals A novel hydrographic gridded data set for the northern Antarctic Peninsula

2021 ◽  
Vol 13 (2) ◽  
pp. 671-696
Author(s):  
Tiago S. Dotto ◽  
Mauricio M. Mata ◽  
Rodrigo Kerr ◽  
Carlos A. E. Garcia

Abstract. The northern Antarctic Peninsula (NAP) is a highly dynamic transitional zone between the subpolar-polar and oceanic-coastal environments, and it is located in an area affected by intense climate change, including intensification and spatial shifts of the westerlies as well as atmospheric and oceanic warming. In the NAP area, the water masses originate mainly from the Bellingshausen and Weddell seas, which create a marked regional dichotomy thermohaline characteristic. Although the NAP area has relatively easy access when compared to other Southern Ocean environments, our understanding of the water masses' distribution and the dynamical processes affecting the variability of the region is still limited. That limitation is closely linked to the sparse data coverage, as is commonly the case in most Southern Ocean environments. This work provides a novel seasonal three-dimensional high-resolution hydrographic gridded data set for the NAP (version 1), namely the NAPv1.0. Hydrographic measurements from 1990 to 2019 comprising data collected by conductivity, temperature, depth (CTD) casts; sensors from the Marine Mammals Exploring the Oceans Pole to Pole (MEOP) consortium; and Argo floats have been optimally interpolated to produce maps of in situ temperature, practical salinity, and dissolved oxygen at ∼ 10 km spatial resolution and 90 depth levels. The water masses and oceanographic features in this regional gridded product are more accurate than other climatologies and state estimate products currently available. The data sets are available in netCDF format at https://doi.org/10.5281/zenodo.4420006 (Dotto et al., 2021). The novel and comprehensive data sets presented here for the NAPv1.0 product are a valuable tool to be used in studies addressing climatological changes in the unique NAP region since they provide accurate initial conditions for ocean models and improve the end of the 20th- and early 21st-century ocean mean-state representation for that area.

2020 ◽  
Author(s):  
Tiago S. Dotto ◽  
Mauricio M. Mata ◽  
Rodrigo Kerr ◽  
Carlos A. E. Garcia

Abstract. The Northern Antarctic Peninsula (NAP) is a highly dynamic transitional zone between the subpolar-polar and oceanic-coastal environments, and it is located in an area affected by intense climate change, including intensification and spatial shifts of the westerlies as well as atmospheric and oceanic warming. In the NAP area, the water masses originate mainly from the Bellingshausen and Weddell Seas, which create a marked regional dichotomic thermohaline characteristic. Although the NAP area has relatively easy access when compared to other Southern Ocean environments, our understanding of the water masses distribution and the dynamical processes affecting the variability of the region is still limited. That limitation is closely linked to the sparse data coverage, as commonly is the case in most of the Southern Ocean environments. This work provides a novel three-dimensional high-resolution hydrographic gridded data set for the NAP, namely the GOAL gridded product. Hydrographic measurements from 2003–2019 have been optimally interpolated to produce maps of conservative temperature, absolute salinity, neutral density and dissolved oxygen at ~10 km spatial resolution and 114 depth levels. The water masses and oceanographic features in this regional gridded product are more accurate than other climatologies and state estimate products currently available. The data sets are available in netCDF format at https://www.goal.furg.br/producao-cientifica/supplements/203-goal-gridded-nap and at https://doi.org/10.5281/zenodo.3989548 (Dotto et al., 2020). The novel GOAL gridded product and comprehensive data sets presented here are a valuable tool to be used in studies addressing climatological changes in the unique NAP region since they provide accurate initial conditions for ocean models and improve the early 21st-century ocean mean-summer-state representation for that area.


2009 ◽  
Vol 2 (1) ◽  
pp. 421-475 ◽  
Author(s):  
A. Velo ◽  
F. F. Pérez ◽  
X. Lin ◽  
R. M. Key ◽  
T. Tanhua ◽  
...  

Abstract. Data on carbon and carbon-relevant hydrographic and hydrochemical parameters from previously non-publicly available cruise data sets in the Artic Mediterranean Seas (AMS), Atlantic and Southern Ocean have been retrieved and merged to a new database: CARINA (CARbon IN the Atlantic). These data have gone through rigorous quality control (QC) procedures to assure the highest possible quality and consistency. The data for most of the measured parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions; AMS, Atlantic and Southern Ocean. Out of a total of 188 cruise entries in the CARINA database, 59 reported pH measured values. Here we present details of the secondary QC on pH for the CARINA database. Procedures of quality control, including crossover analysis between cruises and inversion analysis of all crossover data are briefly described. Adjustments were applied to the pH values for 21 of the cruises in the CARINA dataset. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s. Based on our analysis we estimate the internal accuracy of the CARINA pH data to be 0.005 pH units. The CARINA data are now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.


2010 ◽  
Vol 2 (1) ◽  
pp. 133-155 ◽  
Author(s):  
A. Velo ◽  
F. F. Pérez ◽  
X. Lin ◽  
R. M. Key ◽  
T. Tanhua ◽  
...  

Abstract. Data on carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Artic Mediterranean Seas (AMS), Atlantic Ocean and Southern Ocean have been retrieved and merged to a new database: CARINA (CARbon IN the Atlantic Ocean). These data have gone through rigorous quality control (QC) procedures to assure the highest possible quality and consistency. The data for most of the measured parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values. Systematic biases found in the data have been corrected in the data products, three merged data files with measured, calculated and interpolated data for each of the three CARINA regions; AMS, Atlantic Ocean and Southern Ocean. Out of a total of 188 cruise entries in the CARINA database, 59 reported pH measured values. All reported pH data have been unified to the Sea-Water Scale (SWS) at 25 °C. Here we present details of the secondary QC of pH in the CARINA database and the scale unification to SWS at 25 °C. The pH scale has been converted for 36 cruises. Procedures of quality control, including crossover analysis between cruises and inversion analysis are described. Adjustments were applied to the pH values for 21 of the cruises in the CARINA dataset. With these adjustments the CARINA database is consistent both internally as well as with the GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s. Based on our analysis we estimate the internal consistency of the CARINA pH data to be 0.005 pH units. The CARINA data are now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates, for ocean acidification assessment and for model validation.


Polar Record ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 58-71 ◽  
Author(s):  
P.M. Suprenand ◽  
D.L. Jones ◽  
J.J. Torres

ABSTRACTDistributions of gymnosomatous pteropods,Spongiobranchaea australisandClione antarctica, were determined at six sites along a latitudinal gradient in western Antarctica Peninsula shelf waters using vertically stratified trawls. Hydrographic data were collected at the same sites with conductivity-temperature-depth casts, and correlations of explanatory variables to gymnosome distributions were determined using statistical analyses performed in Matlab, a high level programming software to conduct numerical computation and visualisation. Explanatory variables included sampling site, latitude, longitude and depth, seawater temperature, salinity and density, Southern Ocean Antarctic Surface Water, Winter Water, Upper Circumpolar Deep Water and warm transitional waters, as well as oceanographic remote sensing data for coloured dissolved organic matter, chlorophyllaconcentration, normalised fluorescence line height, nighttime sea surface temperature, photosynthetically active radiation, particulate inorganic carbon, particulate organic carbon, daytime sea surface temperature and daily sea ice concentration. Hydrographic data revealed that warmer water masses were prevalent along the western Antarctic Peninsula, and the distributions of both gymnosome species were primarily influenced by water masses, temperature, sampling site and latitude. As a consequence, distributional shifts of gymnosomes are predicted in response to the current warming trends.


2017 ◽  
Vol 9 (1) ◽  
pp. 115-131 ◽  
Author(s):  
Jacqueline Huber ◽  
Alison J. Cook ◽  
Frank Paul ◽  
Michael Zemp

Abstract. The glaciers on the Antarctic Peninsula (AP) potentially make a large contribution to sea level rise. However, this contribution has been difficult to estimate since no complete glacier inventory (outlines, attributes, separation from the ice sheet) is available. This work fills the gap and presents a new glacier inventory of the AP north of 70° S, based on digitally combining preexisting data sets with geographic information system (GIS) techniques. Rock outcrops have been removed from the glacier basin outlines of Cook et al. (2014) by intersection with the latest layer of the Antarctic Digital Database (Burton-Johnson et al., 2016). Glacier-specific topographic parameters (e.g., mean elevation, slope and aspect) as well as hypsometry have been calculated from the DEM of Cook et al. (2012). We also assigned connectivity levels to all glaciers following the concept by Rastner et al. (2012). Moreover, the bedrock data set of Huss and Farinotti (2014) enabled us to add ice thickness and volume for each glacier. The new inventory is available from the Global Land Ice Measurements from Space (GLIMS) database (doi:10.7265/N5V98602) and consists of 1589 glaciers covering an area of 95 273 km2, slightly more than the 89 720 km2 covered by glaciers surrounding the Greenland Ice Sheet. Hence, compared to the preexisting data set of Cook et al. (2014), this data set covers a smaller area and one glacier less due to the intersection with the rock outcrop data set. The total estimated ice volume is 34 590 km3, of which one-third is below sea level. The hypsometric curve has a bimodal shape due to the unique topography of the AP, which consists mainly of ice caps with outlet glaciers. Most of the glacierized area is located at 200–500 m a.s.l., with a secondary maximum at 1500–1900 m. Approximately 63 % of the area is drained by marine-terminating glaciers, and ice-shelf tributary glaciers cover 35 % of the area. This combination indicates a high sensitivity of the glaciers to climate change for several reasons: (1) only slightly rising equilibrium-line altitudes would expose huge additional areas to ablation, (2) rising ocean temperatures increase melting of marine terminating glaciers, and (3) ice shelves have a buttressing effect on their feeding glaciers and their collapse would alter glacier dynamics and strongly enhance ice loss (Rott et al., 2011). The new inventory should facilitate modeling of the related effects using approaches tailored to glaciers for a more accurate determination of their future evolution and contribution to sea level rise.


2012 ◽  
Vol 14 (4) ◽  
pp. 1036-1050 ◽  
Author(s):  
Syed Zakir Hossein ◽  
Han Man Shin ◽  
Choi Gyewoon

This paper attempts to characterize regional drought using 0.5 degree reanalyzed GPCC (Global Precipitation Climatology Center) gauge-based gridded monthly precipitation data sets in Korea. Drought is a function of precipitation and long-term observed precipitation was performed to enhance this characterization. There are limited long-term records from each station, therefore, a global gridded data set has been employed. Before using this data, 10 corresponding grids with KMA (Korea Meteorology Administration) stations were validated through cross-correlations (0.93–0.99). The impacts of drought are dependent on its duration, severity and spatial extent. Drought occurs when a below average water availability persists and becomes regionally extensive. In this study, 66 GPCC gridded precipitations were employed to estimate the effective drought index along with the available water resource index. The results of the 10 KMA corresponding stations were as accurate as those of the global data. Consequently, gridded data are suitable for a monthly drought severity investigation. In addition, spatial distribution of drought and available water resources were exposed by kriging interpolation technique over Korea. Through this study, drought risk city Taebaek in Kangwon province was classified by its 2009 intensity of monthly precipitations, droughts and available water resources.


2021 ◽  
Vol 13 (5) ◽  
pp. 2165-2209
Author(s):  
Pavol Zahorec ◽  
Juraj Papčo ◽  
Roman Pašteka ◽  
Miroslav Bielik ◽  
Sylvain Bonvalot ◽  
...  

Abstract. The AlpArray Gravity Research Group (AAGRG), as part of the European AlpArray program, focuses on the compilation of a homogeneous surface-based gravity data set across the Alpine area. In 2017 10 European countries in the Alpine realm agreed to contribute with gravity data for a new compilation of the Alpine gravity field in an area spanning from 2 to 23∘ E and from 41 to 51∘ N. This compilation relies on existing national gravity databases and, for the Ligurian and the Adriatic seas, on shipborne data of the Service Hydrographique et Océanographique de la Marine and of the Bureau Gravimétrique International. Furthermore, for the Ivrea zone in the Western Alps, recently acquired data were added to the database. This first pan-Alpine gravity data map is homogeneous regarding input data sets, applied methods and all corrections, as well as reference frames. Here, the AAGRG presents the data set of the recalculated gravity fields on a 4 km × 4 km grid for public release and a 2 km × 2 km grid for special request. The final products also include calculated values for mass and bathymetry corrections of the measured gravity at each grid point, as well as height. This allows users to use later customized densities for their own calculations of mass corrections. Correction densities used are 2670 kg m−3 for landmasses, 1030 kg m−3 for water masses above the ellipsoid and −1640 kg m−3 for those below the ellipsoid and 1000 kg m−3 for lake water masses. The correction radius was set to the Hayford zone O2 (167 km). The new Bouguer anomaly is station completed (CBA) and compiled according to the most modern criteria and reference frames (both positioning and gravity), including atmospheric corrections. Special emphasis was put on the gravity effect of the numerous lakes in the study area, which can have an effect of up to 5 mGal for gravity stations located at shorelines with steep slopes, e.g., for the rather deep reservoirs in the Alps. The results of an error statistic based on cross validations and/or “interpolation residuals” are provided for the entire database. As an example, the interpolation residuals of the Austrian data set range between about −8 and +8 mGal and the cross-validation residuals between −14 and +10 mGal; standard deviations are well below 1 mGal. The accuracy of the newly compiled gravity database is close to ±5 mGal for most areas. A first interpretation of the new map shows that the resolution of the gravity anomalies is suited for applications ranging from intra-crustal- to crustal-scale modeling to interdisciplinary studies on the regional and continental scales, as well as applications as joint inversion with other data sets. The data are published with the DOI https://doi.org/10.5880/fidgeo.2020.045 (Zahorec et al., 2021) via GFZ Data Services.


2010 ◽  
Vol 2 (1) ◽  
pp. 17-34 ◽  
Author(s):  
T. Tanhua ◽  
R. Steinfeldt ◽  
R. M. Key ◽  
P. Brown ◽  
N. Gruber ◽  
...  

Abstract. Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Arctic Mediterranean Seas, Atlantic and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon dioxide IN the Atlantic Ocean). The data have gone through rigorous quality control procedures to assure the highest possible quality and consistency. The data for the pertinent parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the three data products: merged data files with measured, calculated and interpolated data for each of the three CARINA regions, i.e. the Arctic Mediterranean Seas, the Atlantic and the Southern Ocean. These products have been corrected to be internally consistent. Ninety-eight of the cruises in the CARINA database were conducted in the Atlantic Ocean, defined here as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we present an overview of the Atlantic Ocean synthesis of the CARINA data and the adjustments that were applied to the data product. We also report the details of the secondary QC (Quality Control) for salinity for this data set. Procedures of quality control – including crossover analysis between stations and inversion analysis of all crossover data – are briefly described. Adjustments to salinity measurements were applied to the data from 10 cruises in the Atlantic Ocean region. Based on our analysis we estimate the internal consistency of the CARINA-ATL salinity data to be 4.1 ppm. With these adjustments the CARINA data products are consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s, and is now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.


2009 ◽  
Vol 2 (1) ◽  
pp. 241-280 ◽  
Author(s):  
T. Tanhua ◽  
R. Steinfeldt ◽  
R. M. Key ◽  
P. Brown ◽  
N. Gruber ◽  
...  

Abstract. Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Arctic, Atlantic and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic). The data have gone through rigorous quality control procedures to assure the highest possible quality and consistency. The data for the pertinent parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions, i.e. Arctic, Atlantic and Southern Ocean. Ninety-eight of the cruises in the CARINA database were conducted in the Atlantic Ocean, defined here as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we present an overview of the Atlantic Ocean synthesis of the CARINA data and the adjustments that were applied to the data product. We also report details of the secondary QC for salinity for this data set. Procedures of quality control – including crossover analysis between stations and inversion analysis of all crossover data – are briefly described. Adjustments to salinity measurements were applied to the data from 10 cruises in the Atlantic Ocean region. Based on our analysis we estimate the internal accuracy of the CARINA-ATL salinity data to be 4.1 ppm. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s (Key et al., 2004), and is now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.


2021 ◽  
Author(s):  
Julia Duras ◽  
Florian Ziemen ◽  
Daniel Klocke

<p>The DYAMOND project (<strong>DY</strong>namics of the <strong>A</strong>tmospheric general circulation <strong>M</strong>odeled <strong>O</strong>n <strong>N</strong>on-hydrostatic <strong>D</strong>omains) is the first initiative for a model intercomparison of global storm resolving (km-scale) climate simulations. The analysis of these simulations advances the understanding of the climate system and improves the next-generation of weather and climate models. In a first phase, a period of 40 days from 1st of August 2016 was simulated, with all models starting from the same initial conditions. The resulting data set is referred to as ”DYAMOND Summer” data. In its second, currently ongoing phase ”DYAMOND Winter”, participating models simulate 40 days starting on the 20th of January 2020, also covering the period of the EUREC4A field experiment. While the DYAMOND Summer only included atmosphere models, the DYAMOND Winter data set also includes coupled atmosphere-ocean models resolving ocean-eddies, atmospheric storms and their interactions. <br>The analysis of these simulations allows to identify robust features common to this class of new models, and provides insights into implementation-dependence of the results and a hint of the future of climate modelling (e.g. <em>Arnold et al., 2020 </em>; <em>Dueben et al., 2020 </em>; <em>Stevens et al., 2020 </em>; <em>Wedi et al., 2020 </em>). <br>The Centre of Excellence in Simulation of Weather and Climate in Europe (ESiWACE) and the German Climate computing centre (DKRZ) are making this data available to the research community. For this purpose, a user-friendly central point of access, the so-called “DYAMOND data library” has been developed. It provides access to the Summer and Winter data collections. A growing community with a lively exchange (e.g. during regular Hackathons) further simplifies the usage of these data sets. </p><p>The presentation will introduce the DYAMOND project with a focus on the new DYAMOND Winter data collection. It will present the corresponding experiment protocol and the participating models. To invite scientists to use these data sets, different ways of using the data on the supercomputer of DKRZ will be described in detail.</p>


Sign in / Sign up

Export Citation Format

Share Document