scholarly journals High-resolution bathymetry models for the Lena Delta and Kolyma Gulf coastal zones

2021 ◽  
Author(s):  
Matthias Fuchs ◽  
Juri Palmtag ◽  
Bennet Juhls ◽  
Pier Paul Overduin ◽  
Guido Grosse ◽  
...  

Abstract. Arctic river deltas and deltaic near-shore zones represent important land-ocean transition zones influencing sediment dynamics and nutrient fluxes from permafrost-affected terrestrial ecosystems into the coastal Arctic Ocean. To accurately model fluvial carbon and freshwater export from rapidly changing river catchments, as well assessing impacts of future change on the Arctic shelf and coastal ecosystems, we need to understand the sea floor characteristics and topographic variety of the coastal zones. To date, digital bathymetrical data from the poorly accessible, shallow and large areas of the eastern Siberian Arctic shelves are sparse. We have digitized bathymetrical information for nearly 75,000 locations from large-scale current and historical nautical maps of the Lena Delta and the Kolyma Gulf Region in Northeast Siberia. We present the first detailed and seamless digital models of coastal zone bathymetry for both delta/gulf regions. We validated the resulting bathymetry layers using a combination of our own water depth measurements and a collection of available depth measurements, which showed a strong correlation (r > 0.9). Our bathymetrical models will serve as an input for a high-resolution coupled hydrodynamic-ecosystem model to better quantify fluvial and coastal carbon fluxes to the Arctic Ocean but may be useful for a range of other studies related to Arctic delta and near-shore dynamics such as modelling of submarine permafrost, near-shore sea ice, or shelf sediment transport. The new digital high-resolution bathymetry products are available on the PANGAEA data set repository (Fuchs et al. 2021a, b). Likewise the depth validation data is available on PANGAEA as well (Fuchs et al., 2021c).

2021 ◽  
Author(s):  
Roberta Ivaldi ◽  
Maurizio Demarte ◽  
Massimiliano Nannini ◽  
Giuseppe Aquino ◽  
Cosimo Brancati ◽  
...  

<p>New hydro-oceanographic data were collected in the Arctic Ocean during HIGN NORTH20 marine geophysical campaign performed in July 2020, in a COVID-19 pandemic period. HIGH NORTH20 was developed as part of the IT-Navy HIGH NORTH program, a Pluriannual Joint Research Program in the Arctic devoted to contribute to oceans knowledge in order to ensure ocean science improving conditions for sustainable development of the Ocean in the aim of United Nations Decade of Ocean Science for Sustainable development and the GEBCO - SEABED 2030 project. In order to contribute in exploration and high-resolution seabed mapping new data was collected using a multibeam echosounder (EM 302 - 30 kHz). The particular sea ice environmental condition with open-sea allowed to survey and mapping the Molloy Hole, the deepest sector of the Arctic Ocean, a key area in the global geodynamics and oceanographic context. A 3D model of the Molloy Hole (804 km<sup>2</sup>) and the detection of the deepest seafloor (5567m - 79° 08.9’ N 002° 47.0’ E) was obtained with a 10x10m grid in compliance to the IHO standards.</p>


2020 ◽  
Vol 14 (7) ◽  
pp. 2189-2203
Author(s):  
H. Jakob Belter ◽  
Thomas Krumpen ◽  
Stefan Hendricks ◽  
Jens Hoelemann ◽  
Markus A. Janout ◽  
...  

Abstract. The gridded sea ice thickness (SIT) climate data record (CDR) produced by the European Space Agency (ESA) Sea Ice Climate Change Initiative Phase 2 (CCI-2) is the longest available, Arctic-wide SIT record covering the period from 2002 to 2017. SIT data are based on radar altimetry measurements of sea ice freeboard from the Environmental Satellite (ENVISAT) and CryoSat-2 (CS2). The CCI-2 SIT has previously been validated with in situ observations from drilling, airborne remote sensing, electromagnetic (EM) measurements and upward-looking sonars (ULSs) from multiple ice-covered regions of the Arctic. Here we present the Laptev Sea CCI-2 SIT record from 2002 to 2017 and use newly acquired ULS and upward-looking acoustic Doppler current profiler (ADCP) sea ice draft (VAL) data for validation of the gridded CCI-2 and additional satellite SIT products. The ULS and ADCP time series provide the first long-term satellite SIT validation data set from this important source region of sea ice in the Transpolar Drift. The comparison of VAL sea ice draft data with gridded monthly mean and orbit trajectory CCI-2 data, as well as merged CryoSat-2–SMOS (CS2SMOS) sea ice draft, shows that the agreement between the satellite and VAL draft data strongly depends on the thickness of the sampled ice. Rather than providing mean sea ice draft, the considered satellite products provide modal sea ice draft in the Laptev Sea. Ice drafts thinner than 0.7 m are overestimated, while drafts thicker than approximately 1.3 m are increasingly underestimated by all satellite products investigated for this study. The tendency of the satellite SIT products to better agree with modal sea ice draft and underestimate thicker ice needs to be considered for all past and future investigations into SIT changes in this important region. The performance of the CCI-2 SIT CDR is considered stable over time; however, observed trends in gridded CCI-2 SIT are strongly influenced by the uncertainties of ENVISAT and CS2 and the comparably short investigation period.


2016 ◽  
Author(s):  
Janin Schaffer ◽  
Ralph Timmermann ◽  
Jan Erik Arndt ◽  
Steen Savstrup Kristensen ◽  
Christoph Mayer ◽  
...  

Abstract. The ocean plays an important role in modulating the mass balance of the polar ice sheets by interacting with the ice shelves in Antarctica and with the marine-terminating outlet glaciers in Greenland. Given that the flux of warm water onto the continental shelf and into the sub-ice cavities is steered by complex bathymetry, a detailed topography data set is an essential ingredient for models that address ice-ocean interaction. We followed the spirit of the global RTopo-1 data set and compiled consistent maps of global ocean bathymetry, upper and lower ice surface topographies and global surface height on a spherical grid with now 30-arc seconds resolution. We used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves and sub-ice cavities, RTopo-2 now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at a good representation of the fjord and shelf bathymetry surrounding the Greenland continent. We corrected data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ and Sermilik Fjord assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79° N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey data for the region. Radar data for surface topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centers of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF) and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database at https://doi.pangaea.de/10.1594/PANGAEA.856844.


2002 ◽  
Vol 2 (3/4) ◽  
pp. 147-155 ◽  
Author(s):  
Ch. Jaedicke ◽  
A. D. Sandvik

Abstract. Blowing snow and snow drifts are common features in the Arctic. Due to sparse vegetation, low temperatures and high wind speeds, the snow is constantly moving. This causes severe problems for transportation and infrastructure in the affected areas. To minimise the effect of drifting snow already in the designing phase of new structures, adequate models have to be developed and tested. In this study, snow distribution in Arctic topography is surveyed in two study areas during the spring of 1999 and 2000. Snow depth is measured by ground penetrating radar and manual methods. The study areas encompass four by four kilometres and are partly glaciated. The results of the surveys show a clear pattern of erosion, accumulation areas and the evolution of the snow cover over time. This high resolution data set is valuable for the validation of numerical models. A simple numerical snow drift model was used to simulate the measured snow distribution in one of the areas for the winter of 1998/1999. The model is a two-level drift model coupled to the wind field, generated by a mesoscale meteorological model. The simulations are based on five wind fields from the dominating wind directions. The model produces a satisfying snow distribution but fails to reproduce the details of the observed snow cover. The results clearly demonstrate the importance of quality field data to detect and analyse errors in numerical simulations.


2007 ◽  
Vol 37 (4) ◽  
pp. 1066-1076 ◽  
Author(s):  
M-L. Timmermans ◽  
H. Melling ◽  
L. Rainville

Abstract A 50-day time series of high-resolution temperature in the deepest layers of the Canada Basin in the Arctic Ocean indicates that the deep Canada Basin is a dynamically active environment, not the quiet, stable basin often assumed. Vertical motions at the near-inertial (tidal) frequency have amplitudes of 10– 20 m. These vertical displacements are surprisingly large considering the downward near-inertial internal wave energy flux typically observed in the Canada Basin. In addition to motion in the internal-wave frequency band, the measurements indicate distinctive subinertial temperature fluctuations, possibly due to intrusions of new water masses.


2014 ◽  
Vol 7 (6) ◽  
pp. 8399-8432 ◽  
Author(s):  
A. Samuelsen ◽  
C. Hansen ◽  
H. Wehde

Abstract. The HYCOM-NORWECOM modeling system is used both for basic research and as a part of the forecasting system for the Arctic Marine Forecasting Centre through the MyOcean project. Here we present a revised version of this model. The present model, as well as the sensitivity simulations leading up to this version, has been compared to a dataset of in-situ measurements of nutrient and chlorophyll from the Norwegian Sea and the Atlantic sector of the Arctic Ocean. The revisions having most impact included adding diatoms to the diet of micro-zooplankton, increasing micro-zooplankton grazing rate and decreased silicate-to-nitrate ratio in diatoms. Model runs are performed both with a coarse- (~50 km) and higher-resolution (~15 km) model configuration, both covering the North Atlantic and Arctic Ocean. While the new model formulation improves the results in both the coarse- and high-resolution model, the nutrient bias is smaller in the high-resolution model, probably as a result of the better resolution of the main processes and with that improved circulation. The final revised version delivers satisfactory results for all three nutrients as well as improved result for chlorophyll in terms of the annual cycle amplitude. However, for chlorophyll the correlation with in-situ data remains relatively low. Besides the large uncertainties associated with observational data this is possibly caused by the fact that constant C / N and Chl / N ratios are implemented in the model.


2020 ◽  
Author(s):  
Tina Sanders ◽  
Matthias Fuchs ◽  
Kirstin Dähnke

<p>Soils and sediments in the Lena Delta in Northeast Siberia store large amounts of organic matter including organic bound nitrogen. This nitrogen is not directly available for plants and primary production, but can be remineralised in the soils or in sediments after erosion to the Lena River. Our study aims to estimate the load of reactive nitrogen from terrestrial sources into the Arctic Ocean. Therefore, water and sediment samples were collected along a transect (~200 km) from the centre of the Delta to the open Laptev Sea in summer 2019. On the collected samples, we will measure dissolved organic and inorganic nitrogen, particulate nitrogen and CN ratio. In addition, the <sup>15</sup>N stable isotope values of these components will be determined to identify nitrogen sources, sinks and processes of nitrogen transformation. Additionally, we carried out incubation experiments in the field to determine the potential remineralisation rates of various soil types in Lena water and nutrients fluxes of the sediments. The load of dissolved inorganic nitrogen in the Lena water in the delta was very low and low nitrate and silicate concentration indicate uptake by phytoplankton. Outside the Lena Delta, a lens of nutrient depleted freshwater covered the salty Arctic Ocean water, which had higher loads of reactive nitrogen. The organic matter content of the soils and sediment is highly variable and ranges from 1 to 45 %. This organic matter is the source of reactive nitrogen, which is determined in incubation experiments and using nitrogen stable isotopes. We found that especially the unvegetated soils and sediment are sources of reactive nitrogen in the end of vegetation period, and are potentially sources of nitrous oxide emissions.</p>


Marine Policy ◽  
2017 ◽  
Vol 75 ◽  
pp. 300-317 ◽  
Author(s):  
Yevgeny Aksenov ◽  
Ekaterina E. Popova ◽  
Andrew Yool ◽  
A.J. George Nurser ◽  
Timothy D. Williams ◽  
...  

2018 ◽  
Vol 62 (6) ◽  
pp. 1324-1343 ◽  
Author(s):  
M. Cancet ◽  
O.B. Andersen ◽  
F. Lyard ◽  
D. Cotton ◽  
J. Benveniste

Sign in / Sign up

Export Citation Format

Share Document