scholarly journals Future Flows Hydrology: an ensemble of daily river flow and monthly groundwater levels for use for climate change impact assessment across Great Britain

2013 ◽  
Vol 5 (1) ◽  
pp. 101-107 ◽  
Author(s):  
C. Prudhomme ◽  
T. Haxton ◽  
S. Crooks ◽  
C. Jackson ◽  
A. Barkwith ◽  
...  

Abstract. The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels'' to provide a consistent set of transient daily river flow and monthly groundwater level projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate–hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961–1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b

2012 ◽  
Vol 5 (2) ◽  
pp. 1159-1178 ◽  
Author(s):  
C. Prudhomme ◽  
T. Haxton ◽  
S. Crooks ◽  
C. Jackson ◽  
A. Barkwith ◽  
...  

Abstract. The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of transient daily river flow and monthly groundwater levels projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961–1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b.


2012 ◽  
Vol 4 (1) ◽  
pp. 143-148 ◽  
Author(s):  
C. Prudhomme ◽  
S. Dadson ◽  
D. Morris ◽  
J. Williamson ◽  
G. Goodsell ◽  
...  

Abstract. The dataset Future Flows Climate was developed as part of the project ''Future Flows and Groundwater Levels'' to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications, and to enable climate change uncertainty and climate variability to be accounted for in the assessment of their possible impacts on the environment. Future Flows Climate is derived from the Hadley Centre's ensemble projection HadRM3-PPE that is part of the basis of UKCP09 and includes projections in available precipitation (water available to hydrological processes after snow and ice storages have been accounted for) and potential evapotranspiration. It corresponds to an 11-member ensemble of transient projections from January 1950 to December 2098, each a single realisation from a different variant of HadRM3. Data are provided on a 1-km grid over the HadRM3 land areas at a daily (available precipitation) and monthly (PE) time step as netCDF files. Because systematic biases in temperature and precipitation were found between HadRM3-PPE and gridded temperature and precipitation observations for the 1962–1991 period, a monthly bias correction procedure was undertaken, based on a linear correction for temperature and a quantile-mapping correction (using the gamma distribution) for precipitation followed by a spatial downscaling. Available precipitation was derived from the bias-corrected precipitation and temperature time series using a simple elevation-dependant snow-melt model. Potential evapotranspiration time series were calculated for each month using the FAO-56 Penman-Monteith equations and bias-corrected temperature, cloud cover, relative humidity and wind speed from HadRM3-PPE along with latitude of the grid and the day of the year. Future Flows Climate is freely available for non-commercial use under certain licensing conditions. It is the dataset used to generate Future Flows Hydrology, an ensemble of transient projections of daily river flow and monthly groundwater time series for representative river basins and boreholes in Great Britain. doi:10.5285/bad1514f-119e-44a4-8e1e-442735bb9797.


2012 ◽  
Vol 5 (1) ◽  
pp. 475-490 ◽  
Author(s):  
C. Prudhomme ◽  
S. Dadson ◽  
D. Morris ◽  
J. Williamson ◽  
G. Goodsell ◽  
...  

Abstract. 1. The dataset Future Flows Climate was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications, and to enable for climate change uncertainty and climate variability to be accounted for in the assessment of their possible impacts on the environment. 2. Future Flows Climate is derived from the Hadley Centre's ensemble Projection HadRM3-PPE that is part of the basis of UKCP09 and includes projections in available precipitation (water available to hydrological processes after snow and ice storages have been accounted for) and potential evapotranspiration. It corresponds to an 11-member ensemble of transient projections from January 1950 to December 2098, each a single realisation from a different variant of HadRM3. Data are provided on a 1-km grid over the HadRM3 land areas at a daily (available precipitation) and monthly (PE) time step as NetCDF files. 3. Because systematic biases in temperature and precipitation were found between HadRM3-PPE and gridded temperature and precipitation observations for the 1962–1991 period, a monthly bias correction procedure was undertaken, based on a linear correction for temperature and a quantile-mapping correction (using the gamma distribution) for precipitation followed by a spatial downscaling. Available precipitation was derived from the bias-corrected precipitation and temperature time series using a simple elevation-dependant snow-melt model. Potential evapotranspiration time series were calculated for each month using the FAO-56 Penman Montieth equations and bias-corrected temperature, cloud cover, relative humidity and wind speed from HadRM3-PPE along with latitude of the grid and the day of the year. 4. Future Flows Climate is freely available for non commercial use under certain licensing conditions. It is the dataset used to generate Future Flows Hydrology, an ensemble of transient projections of daily river flow and monthly groundwater time series for representative river basins and boreholes in Great Britain. 5. doi:10.5285/bad1514f-119e-44a4-8e1e-442735bb9797


2018 ◽  
Vol 10 (4) ◽  
pp. 759-781 ◽  
Author(s):  
Hadush K. Meresa ◽  
Mulusew T. Gatachew

Abstract This paper aims to study climate change impact on the hydrological extremes and projected precipitation extremes in far future (2071–2100) period in the Upper Blue Nile River basin (UBNRB). The changes in precipitation extremes were derived from the most recent AFROCORDEX climate data base projection scenarios compared to the reference period (1971–2000). The climate change impacts on the hydrological extremes were evaluated using three conceptual hydrological models: GR4 J, HBV, and HMETS; and two objective functions: NSE and LogNSE. These hydrological models are calibrated and validated in the periods 1971–2000 and 2001–2010, respectively. The results indicate that the wet/dry spell will significantly decrease/increase due to climate change in some sites of the region, while in others, there is increase/decrease in wet/dry spell but not significantly, respectively. The extreme river flow will be less attenuated and more variable in terms of magnitude, and more irregular in terms of seasonal occurrence than at present. Low flows are projected to increase most prominently for lowland sites, due to the combined effects of projected decreases in Belg and Bega precipitation, and projected increases in evapotranspiration that will reduce residual soil moisture in Bega and Belg seasons.


2021 ◽  
Author(s):  
Andreas Wunsch ◽  
Tanja Liesch ◽  
Stefan Broda

<p>Clear signs of climate stress on groundwater resources have been observed in recent years even in generally water-rich regions such as Germany. Severe droughts, resulting in decreased groundwater recharge, led to declining groundwater levels in many regions and even local drinking water shortages have occurred in past summers. We investigate how climate change will directly influence the groundwater resources in Germany until the year 2100. For this purpose, we use a machine learning groundwater level forecasting framework, based on Convolutional Neural Networks, which has already proven its suitability in modelling groundwater levels. We predict groundwater levels on more than 120 wells distributed over the entire area of Germany that showed strong reactions to meteorological signals in the past. The inputs are derived from the RCP8.5 scenario of six climate models, pre-selected and pre-processed by the German Meteorological Service, thus representing large parts of the range of the expected change in the next 80 years. Our models are based on precipitation and temperature and are carefully evaluated in the past and only wells with models reaching high forecasting skill scores are included in our study. We only consider natural climate change effects based on meteorological changes, while highly uncertain human factors, such as increased groundwater abstraction or irrigation effects, remain unconsidered due to a lack of reliable input data. We can show significant (p<0.05) declining groundwater levels for a large majority of the considered wells, however, at the same time we interestingly observe the opposite behaviour for a small portion of the considered locations. Further, we show mostly strong increasing variability, thus an increasing number of extreme groundwater events. The spatial patterns of all observed changes reveal stronger decreasing groundwater levels especially in the northern and eastern part of Germany, emphasizing the already existing decreasing trends in these regions</p>


2012 ◽  
Vol 16 (5) ◽  
pp. 1517-1531 ◽  
Author(s):  
J. Dams ◽  
E. Salvadore ◽  
T. Van Daele ◽  
V. Ntegeka ◽  
P. Willems ◽  
...  

Abstract. Given the importance of groundwater for food production and drinking water supply, but also for the survival of groundwater dependent terrestrial ecosystems (GWDTEs) it is essential to assess the impact of climate change on this freshwater resource. In this paper we study with high temporal and spatial resolution the impact of 28 climate change scenarios on the groundwater system of a lowland catchment in Belgium. Our results show for the scenario period 2070–2101 compared with the reference period 1960–1991, a change in annual groundwater recharge between −20% and +7%. On average annual groundwater recharge decreases 7%. In most scenarios the recharge increases during winter but decreases during summer. The altered recharge patterns cause the groundwater level to decrease significantly from September to January. On average the groundwater level decreases about 7 cm with a standard deviation between the scenarios of 5 cm. Groundwater levels in interfluves and upstream areas are more sensitive to climate change than groundwater levels in the river valley. Groundwater discharge to GWDTEs is expected to decrease during late summer and autumn as much as 10%, though the discharge remains at reference-period level during winter and early spring. As GWDTEs are strongly influenced by temporal dynamics of the groundwater system, close monitoring of groundwater and implementation of adaptive management measures are required to prevent ecological loss.


2019 ◽  
Vol 23 (10) ◽  
pp. 4011-4032 ◽  
Author(s):  
Rosanna A. Lane ◽  
Gemma Coxon ◽  
Jim E. Freer ◽  
Thorsten Wagener ◽  
Penny J. Johnes ◽  
...  

Abstract. Benchmarking model performance across large samples of catchments is useful to guide model selection and future model development. Given uncertainties in the observational data we use to drive and evaluate hydrological models, and uncertainties in the structure and parameterisation of models we use to produce hydrological simulations and predictions, it is essential that model evaluation is undertaken within an uncertainty analysis framework. Here, we benchmark the capability of several lumped hydrological models across Great Britain by focusing on daily flow and peak flow simulation. Four hydrological model structures from the Framework for Understanding Structural Errors (FUSE) were applied to over 1000 catchments in England, Wales and Scotland. Model performance was then evaluated using standard performance metrics for daily flows and novel performance metrics for peak flows considering parameter uncertainty. Our results show that lumped hydrological models were able to produce adequate simulations across most of Great Britain, with each model producing simulations exceeding a 0.5 Nash–Sutcliffe efficiency for at least 80 % of catchments. All four models showed a similar spatial pattern of performance, producing better simulations in the wetter catchments to the west and poor model performance in central Scotland and south-eastern England. Poor model performance was often linked to the catchment water balance, with models unable to capture the catchment hydrology where the water balance did not close. Overall, performance was similar between model structures, but different models performed better for different catchment characteristics and metrics, as well as for assessing daily or peak flows, leading to the ensemble of model structures outperforming any single structure, thus demonstrating the value of using multi-model structures across a large sample of different catchment behaviours. This research evaluates what conceptual lumped models can achieve as a performance benchmark and provides interesting insights into where and why these simple models may fail. The large number of river catchments included in this study makes it an appropriate benchmark for any future developments of a national model of Great Britain.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 949 ◽  
Author(s):  
Jiwan Lee ◽  
Chunggil Jung ◽  
Sehoon Kim ◽  
Seongjoon Kim

This study was to evaluate the groundwater-level behavior in Geum River Basin (9645.5 km2) of South Korea with HadGEM3-RA RCP 4.5 and 8.5 climate change scenarios and future groundwater use data using the soil and water assessment tool (SWAT). Before evaluating future groundwater behavior, the SWAT model was calibrated and validated using the daily inflows and storage of two dams (DCD and YDD) in the basin for 11 years (2005–2015), the daily groundwater-level observation data at five locations (JSJS, OCCS, BEMR, CASS, and BYBY), and the daily inflow and storage of three weir locations (SJW, GJW, and BJW) for three years and five months (August 2012 to December 2015). The Nash–Sutcliffe efficiency (NSE) and the coefficient of determination (R2) of two dam inflows was 0.55–0.70 and 0.67–0.75. For the inflows of the three weirs, NSE was 0.57–0.77 and R2 was 0.62–0.81. The average R2 value for the groundwater levels of the five locations ranged from 0.53 to 0.61. After verifying the SWAT for hydrologic components, we evaluated the behavior of future groundwater levels by future climate change scenarios and estimated future ground water use by Korean water vision 2020 based on ground water use monitoring data. The future groundwater-level decreased by −13.0, −5.0, and −9.0 cm at three upstream locations (JSJS, OCCS, and BEMR) among the five groundwater-level observation locations and increased by +3.0 and +1.0 cm at two downstream locations (CASS and BYBY). The future groundwater level was directly affected by the groundwater recharge, which was dependent on the seasonal and spatial precipitations in the basin.


2011 ◽  
Vol 15 (5) ◽  
pp. 1537-1545 ◽  
Author(s):  
A. K. Gain ◽  
W. W. Immerzeel ◽  
F. C. Sperna Weiland ◽  
M. F. P. Bierkens

Abstract. Climate change is likely to have significant effects on the hydrology. The Ganges-Brahmaputra river basin is one of the most vulnerable areas in the world as it is subject to the combined effects of glacier melt, extreme monsoon rainfall and sea level rise. To what extent climate change will impact river flow in the Brahmaputra basin is yet unclear, as climate model studies show ambiguous results. In this study we investigate the effect of climate change on both low and high flows of the lower Brahmaputra. We apply a novel method of discharge-weighted ensemble modeling using model outputs from a global hydrological models forced with 12 different global climate models (GCMs). Our analysis shows that only a limited number of GCMs are required to reconstruct observed discharge. Based on the GCM outputs and long-term records of observed flow at Bahadurabad station, our method results in a multi-model weighted ensemble of transient stream flow for the period 1961–2100. Using the constructed transients, we subsequently project future trends in low and high river flow. The analysis shows that extreme low flow conditions are likely to occur less frequent in the future. However a very strong increase in peak flows is projected, which may, in combination with projected sea level change, have devastating effects for Bangladesh. The methods presented in this study are more widely applicable, in that existing multi-model streamflow simulations from global hydrological models can be weighted against observed streamflow data to assess at first order the effects of climate change for specific river basins.


Sign in / Sign up

Export Citation Format

Share Document