scholarly journals Seismic detection of rockslides at regional scale: examples from the Eastern Alps and feasibility of kurtosis-based event location

2018 ◽  
Vol 6 (4) ◽  
pp. 955-970 ◽  
Author(s):  
Florian Fuchs ◽  
Wolfgang Lenhardt ◽  
Götz Bokelmann ◽  

Abstract. Seismic records can provide detailed insight into the mechanisms of gravitational mass movements. Catastrophic events that generate long-period seismic radiation have been studied in detail, and monitoring systems have been developed for applications on a very local scale. Here we demonstrate that similar techniques can also be applied to regional seismic networks, which show great potential for real-time and large-scale monitoring and analysis of rockslide activity. This paper studies 19 moderate-sized to large rockslides in the Eastern Alps that were recorded by regional seismic networks within distances of a few tens of kilometers to more than 200 km. We develop a simple and fully automatic processing chain that detects, locates, and classifies rockslides based on vertical-component seismic records. We show that a kurtosis-based onset picker is suitable to detect the very emergent onsets of rockslide signals and to locate the rockslides within a few kilometers from the true origin using a grid search and a 1-D seismic velocity model. Automatic discrimination between rockslides and local earthquakes is possible by a combination of characteristic parameters extracted from the seismic records, such as kurtosis or maximum-to-mean amplitude ratios. We attempt to relate the amplitude of the seismic records to the documented rockslide volume and reveal a potential power law in agreement with earlier studies. Since our approach is based on simplified methods we suggest and discuss how each step of the automatic processing could be expanded and improved to achieve more detailed results in the future.

2018 ◽  
Author(s):  
Florian Fuchs ◽  
Wolfgang Lenhardt ◽  
Götz Bokelmann ◽  

Abstract. Seismic records can provide detailed insight into the mechanisms of gravitational mass movements. Catastrophic events that generate long-period seismic radiation have been studied in detail, and monitoring systems have been developed for applications on very local scale. Here we demonstrate that similar techniques can also be applied to regional seismic networks which show great potential for real-time and large-scale monitoring and analysis of rockslide activity. This manuscript studies 21 moderate-size to large rockslides in the Eastern Alps that were recorded by regional seismic networks within distances of few tens of kilometers to more than 200 km. We develop a simple and fully automatic processing chain that detects, locates, and classifies rockslides based on vertical-component seismic records. We show that a kurtosis-based onset picker is suitable to detect the very emergent onsets of rockslide signals, and to locate the rockslides within a few kilometers from the true origin, using a grid search and a 1D seismic velocity model. Automatic discrimination between rockslides and local earthquakes is possible by a combination of characteristic parameters extracted from the seismic records, such as kurtosis or maximum-to-mean amplitude ratios. We attempt to relate the amplitude of the seismic records with the documented rockslide volume and reveal a potential power-law in agreement with earlier studies. Since our approach is based on simplified methods we suggest and discuss how each step of the automatic processing could be expanded and improved to achieve more detailed results in the future.


2019 ◽  
Vol 7 (2) ◽  
pp. SB1-SB10
Author(s):  
Mingya Chen ◽  
Damian O’Grady

A seismic velocity model is one of the products generated from a seismic imaging project. Recent advances in velocity modeling techniques have significantly improved the quality of seismic velocity data. Yet, the use of seismic velocity to guide geologic interpretations is still limited. This is mainly due to the overwhelming effect of compaction and the low-resolution nature of the seismic velocity model. Geologic boundaries and anomalies are often difficult to visualize from seismic velocity data alone. A new attribute called the trend-match attribute is proposed to reveal changes in velocity compaction trends from seismic velocity. The attribute is computed by comparing seismic velocity data with the regional velocity depth trends defined for different lithofacies using wells. We applied the trend-match attribute on several case studies to facilitate stratigraphic interpretation, horizon mapping, and erosion thickness estimation. Integration of the trend-match attribute volume with migrated seismic images can further constrain the geologic and stratigraphic interpretation at a regional scale.


2021 ◽  
Vol 13 (14) ◽  
pp. 7782
Author(s):  
Wenjing Zeng ◽  
Yongde Zhong ◽  
Dali Li ◽  
Jinyang Deng

The recreation opportunity spectrum (ROS) has been widely recognized as an effective tool for the inventory and planning of outdoor recreational resources. However, its applications have been primarily focused on forest-dominated settings with few studies being conducted on all land types at a regional scale. The creation of a ROS is based on physical, social, and managerial settings, with the physical setting being measured by three criteria: remoteness, size, and evidence of humans. One challenge to extending the ROS to all land types on a large scale is the difficulty of quantifying the evidence of humans and social settings. Thus, this study, for the first time, developed an innovative approach that used night lights as a proxy for evidence of humans and points of interest (POI) for social settings to generate an automatic ROS for Hunan Province using Geographic Information System (GIS) spatial analysis. The whole province was classified as primitive (2.51%), semi-primitive non-motorized (21.33%), semi-primitive motorized (38.60%), semi-developed natural (30.99%), developed natural (5.61%), and highly developed (0.96%), which was further divided into three subclasses: large-natural (0.63%), small natural (0.27%), and facilities (0.06%). In order to implement the management and utilization of natural recreational resources in Hunan Province at the county (city, district) level, the province’s 122 counties (cities, districts) were categorized into five levels based on the ROS factor dominance calculated at the county and provincial levels. These five levels include key natural recreational counties (cities, districts), general natural recreational counties (cities, districts), rural counties (cities, districts), general metropolitan counties (cities, districts), and key metropolitan counties (cities, districts), with the corresponding numbers being 8, 21, 50, 24, and 19, respectively.


Author(s):  
Yinshuo Li ◽  
Jianyong Song ◽  
Wenkai Lu ◽  
Patrice Monkam ◽  
Yile Ao

Geophysics ◽  
2008 ◽  
Vol 73 (2) ◽  
pp. S47-S61 ◽  
Author(s):  
Paul Sava ◽  
Oleg Poliannikov

The fidelity of depth seismic imaging depends on the accuracy of the velocity models used for wavefield reconstruction. Models can be decomposed in two components, corresponding to large-scale and small-scale variations. In practice, the large-scale velocity model component can be estimated with high accuracy using repeated migration/tomography cycles, but the small-scale component cannot. When the earth has significant small-scale velocity components, wavefield reconstruction does not completely describe the recorded data, and migrated images are perturbed by artifacts. There are two possible ways to address this problem: (1) improve wavefield reconstruction by estimating more accurate velocity models and image using conventional techniques (e.g., wavefield crosscorrelation) or (2) reconstruct wavefields with conventional methods using the known background velocity model but improve the imaging condition to alleviate the artifacts caused by the imprecise reconstruction. Wedescribe the unknown component of the velocity model as a random function with local spatial correlations. Imaging data perturbed by such random variations is characterized by statistical instability, i.e., various wavefield components image at wrong locations that depend on the actual realization of the random model. Statistical stability can be achieved by preprocessing the reconstructed wavefields prior to the imaging condition. We use Wigner distribution functions to attenuate the random noise present in the reconstructed wavefields, parameterized as a function of image coordinates. Wavefield filtering using Wigner distribution functions and conventional imaging can be lumped together into a new form of imaging condition that we call an interferometric imaging condition because of its similarity to concepts from recent work on interferometry. The interferometric imaging condition can be formulated both for zero-offset and for multioffset data, leading to robust, efficient imaging procedures that effectively attenuate imaging artifacts caused by unknown velocity models.


2018 ◽  
Vol 12 (03) ◽  
pp. 1850007 ◽  
Author(s):  
J. P. Narayan ◽  
A. Kumar

The effects of ridge and valley on the characteristics of Rayleigh waves are presented in this paper. The research work carried out has been stimulated by the day by day increase of long-span structures in the hilly areas which are largely affected by the spatial variability in ground motion caused by the high-frequency Rayleigh waves. The Rayleigh wave responses of the considered triangular and elliptical ridge and valley models were computed using a fourth-order accurate staggered-grid viscoelastic P-SV wave finite-difference (FD) program. The simulated results revealed very large amplification of the horizontal component and de-amplification of the vertical component of Rayleigh wave at the top of a triangular ridge and de-amplification of both the components at the base of the triangular valley. The observed amplification of both the components of Rayleigh wave in front of elliptical valley was larger than triangular valley models. A splitting of the Rayleigh wave wavelet was inferred after interaction with ridge and valley. It is concluded that the large-scale topography acts as a natural insulator for the surface waves and the insulating capacity of the valley is more than that of a ridge. This insulation phenomenon is arising due to the reflection, diffraction and splitting of the surface wave while moving across the topography. It is concluded that insulating potential of the topography for the Rayleigh waves largely depends on their shape and shape-ratio.


Geophysics ◽  
1994 ◽  
Vol 59 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Gary Mavko ◽  
Diane Jizba

Seismic velocity dispersionin fluid-saturated rocks appears to be dominated by tow mecahnisms: the large scale mechanism modeled by Biot, and the local flow or squirt mecahnism. The tow mechanisms can be distuinguished by the ratio of P-to S-wave dispersions, or more conbeniently, by the ratio of dynamic bulk to shear compliance dispersions derived from the wave velocities. Our formulation suggests that when local flow denominates, the dispersion of the shear compliance will be approximately 4/15 the dispersion of the compressibility. When the Biot mechanism dominates, the constant of proportionality is much smaller. Our examination of ultrasonic velocities from 40 sandstones and granites shows that most, but not all, of the samples were dominated by local flow dispersion, particularly at effective pressures below 40 MPa.


Author(s):  
Giovanna Cultrera ◽  
Cécile Cornou ◽  
Giuseppe Di Giulio ◽  
Pierre-Yves Bard

AbstractIn recent years, the permanent seismic networks worldwide have largely increased, raising the amount of earthquake signals and the applications using seismic records. Although characterization of the soil properties at recording stations has a large impact on hazard estimates, it has not been implemented so far in a standardized way for reaching high-level metadata. To address this issue, we built an online questionnaire for the identification of the indicators useful for a reliable site characterization at a seismic station. We analysed the answers of a large number of experts in different fields, which allowed us to rank 24 different indicators and to identify the most relevant ones: fundamental frequency (f0), shear-wave velocity profile (VS), time-averaged Vs over 30 m (VS30), depth of seismological and engineering bedrock (Hseis_bed and Heng_bed), surface geology and soil class. Moreover, the questionnaire proposed two additional indices in terms of cost and difficulty to obtain a reliable value of each indicator, showing that the selection of the most relevant indicators results from a complex balance between physical relevancy, average cost and reliability. For each indicator we propose a summary report, provided as editable pdf, containing the background information of data acquisition and processing details, with the aim to homogenize site metadata information at European level and to define the quality of the site characterization (see companion paper Di Giulio et al. 2021). The selected indicators and the summary reports have been shared within European and worldwide scientific community and discussed in a dedicated international workshop. They represent a first attempt to reach a homogeneous set of high-level metadata for site characterization.


2021 ◽  
Vol 13 (4) ◽  
pp. 649
Author(s):  
Arne Døssing ◽  
Eduardo Lima Simoes da Silva ◽  
Guillaume Martelet ◽  
Thorkild Maack Rasmussen ◽  
Eric Gloaguen ◽  
...  

Magnetic surveying is a widely used and cost-efficient remote sensing method for the detection of subsurface structures at all scales. Traditionally, magnetic surveying has been conducted as ground or airborne surveys, which are cheap and provide large-scale consistent data coverage, respectively. However, ground surveys are often incomplete and slow, whereas airborne surveys suffer from being inflexible, expensive and characterized by a reduced signal-to-noise ratio, due to increased sensor-to-source distance. With the rise of reliable and affordable survey-grade Unmanned Aerial Vehicles (UAVs), and the developments of light-weight magnetometers, the shortcomings of traditional magnetic surveying systems may be bypassed by a carefully designed UAV-borne magnetometer system. Here, we present a study on the development and testing of a light-weight scalar field UAV-integrated magnetometer bird system (the CMAGTRES-S100). The idea behind the CMAGTRES-S100 is the need for a high-speed and flexible system that is easily transported in the field without a car, deployable in most terrain and weather conditions, and provides high-quality scalar data in an operationally efficient manner and at ranges comparable to sub-regional scale helicopter-borne magnetic surveys. We discuss various steps in the development, including (i) choice of sensor based on sensor specifications and sensor stability tests, (ii) design considerations of the bird, (iii) operational efficiency and flexibility and (iv) output data quality. The current CMAGTRES-S100 system weighs ∼5.9 kg (including the UAV) and has an optimal surveying speed of 50 km/h. The system was tested along a complex coastal setting in Brittany, France, targeting mafic dykes and fault contacts with magnetite infill and magnetite nuggets (skarns). A 2.0 × 0.3 km area was mapped with a 10 m line-spacing by four sub-surveys (due to regulatory restrictions). The sub-surveys were completed in 3.5 h, including >2 h for remobilisation and the safety clearance of the area. A noise-level of ±0.02 nT was obtained and several of the key geological structures were mapped by the system.


SEG Discovery ◽  
2000 ◽  
pp. 1-20
Author(s):  
JEREMY P. RICHARDS

ABSTRACT Large-scale crustal lineaments are recognized as corridors (up to 30 km wide) of aligned geological, structural, geomorphological, or geophysical features that are distinct from regional geological trends such as outcrop traces. They are commonly difficult to observe on the ground, the scale of the features and their interrelationships being too large to map except at a regional scale. They are therefore most easily identified from satellite imagery and geophysical (gravity, magnetic) maps. Lineaments are believed to be the surface expressions of ancient, deep-crustal or trans-lithospheric structures, which periodically have been reactivated as planes of weakness during subsequent tectonic events. These planes of weakness, and in particular their intersections, may provide high-permeability channels for ascent of deeply derived magmas and fluids. Optimum conditions for magma penetration are provided when these structures are placed under tension or transtension. In regions of subduction-related magmatism, porphyry copper and related deposits may be generated along these lineaments because the structures serve to focus the ascent of relatively evolved magmas and fluid distillates from deep-crustal magma reservoirs. However, lineament intersections can only focus such activity where a magma supply exists, and when lithospheric stress conditions permit. A comprehensive understanding of regional tectono-magmatic history is therefore required to interpret lineament maps in terms of their prospectivity for mineral exploration.


Sign in / Sign up

Export Citation Format

Share Document