scholarly journals Classification of Recreation Opportunity Spectrum Using Night Lights for Evidence of Humans and POI Data for Social Setting

2021 ◽  
Vol 13 (14) ◽  
pp. 7782
Author(s):  
Wenjing Zeng ◽  
Yongde Zhong ◽  
Dali Li ◽  
Jinyang Deng

The recreation opportunity spectrum (ROS) has been widely recognized as an effective tool for the inventory and planning of outdoor recreational resources. However, its applications have been primarily focused on forest-dominated settings with few studies being conducted on all land types at a regional scale. The creation of a ROS is based on physical, social, and managerial settings, with the physical setting being measured by three criteria: remoteness, size, and evidence of humans. One challenge to extending the ROS to all land types on a large scale is the difficulty of quantifying the evidence of humans and social settings. Thus, this study, for the first time, developed an innovative approach that used night lights as a proxy for evidence of humans and points of interest (POI) for social settings to generate an automatic ROS for Hunan Province using Geographic Information System (GIS) spatial analysis. The whole province was classified as primitive (2.51%), semi-primitive non-motorized (21.33%), semi-primitive motorized (38.60%), semi-developed natural (30.99%), developed natural (5.61%), and highly developed (0.96%), which was further divided into three subclasses: large-natural (0.63%), small natural (0.27%), and facilities (0.06%). In order to implement the management and utilization of natural recreational resources in Hunan Province at the county (city, district) level, the province’s 122 counties (cities, districts) were categorized into five levels based on the ROS factor dominance calculated at the county and provincial levels. These five levels include key natural recreational counties (cities, districts), general natural recreational counties (cities, districts), rural counties (cities, districts), general metropolitan counties (cities, districts), and key metropolitan counties (cities, districts), with the corresponding numbers being 8, 21, 50, 24, and 19, respectively.

2021 ◽  
Vol 13 (4) ◽  
pp. 649
Author(s):  
Arne Døssing ◽  
Eduardo Lima Simoes da Silva ◽  
Guillaume Martelet ◽  
Thorkild Maack Rasmussen ◽  
Eric Gloaguen ◽  
...  

Magnetic surveying is a widely used and cost-efficient remote sensing method for the detection of subsurface structures at all scales. Traditionally, magnetic surveying has been conducted as ground or airborne surveys, which are cheap and provide large-scale consistent data coverage, respectively. However, ground surveys are often incomplete and slow, whereas airborne surveys suffer from being inflexible, expensive and characterized by a reduced signal-to-noise ratio, due to increased sensor-to-source distance. With the rise of reliable and affordable survey-grade Unmanned Aerial Vehicles (UAVs), and the developments of light-weight magnetometers, the shortcomings of traditional magnetic surveying systems may be bypassed by a carefully designed UAV-borne magnetometer system. Here, we present a study on the development and testing of a light-weight scalar field UAV-integrated magnetometer bird system (the CMAGTRES-S100). The idea behind the CMAGTRES-S100 is the need for a high-speed and flexible system that is easily transported in the field without a car, deployable in most terrain and weather conditions, and provides high-quality scalar data in an operationally efficient manner and at ranges comparable to sub-regional scale helicopter-borne magnetic surveys. We discuss various steps in the development, including (i) choice of sensor based on sensor specifications and sensor stability tests, (ii) design considerations of the bird, (iii) operational efficiency and flexibility and (iv) output data quality. The current CMAGTRES-S100 system weighs ∼5.9 kg (including the UAV) and has an optimal surveying speed of 50 km/h. The system was tested along a complex coastal setting in Brittany, France, targeting mafic dykes and fault contacts with magnetite infill and magnetite nuggets (skarns). A 2.0 × 0.3 km area was mapped with a 10 m line-spacing by four sub-surveys (due to regulatory restrictions). The sub-surveys were completed in 3.5 h, including >2 h for remobilisation and the safety clearance of the area. A noise-level of ±0.02 nT was obtained and several of the key geological structures were mapped by the system.


SEG Discovery ◽  
2000 ◽  
pp. 1-20
Author(s):  
JEREMY P. RICHARDS

ABSTRACT Large-scale crustal lineaments are recognized as corridors (up to 30 km wide) of aligned geological, structural, geomorphological, or geophysical features that are distinct from regional geological trends such as outcrop traces. They are commonly difficult to observe on the ground, the scale of the features and their interrelationships being too large to map except at a regional scale. They are therefore most easily identified from satellite imagery and geophysical (gravity, magnetic) maps. Lineaments are believed to be the surface expressions of ancient, deep-crustal or trans-lithospheric structures, which periodically have been reactivated as planes of weakness during subsequent tectonic events. These planes of weakness, and in particular their intersections, may provide high-permeability channels for ascent of deeply derived magmas and fluids. Optimum conditions for magma penetration are provided when these structures are placed under tension or transtension. In regions of subduction-related magmatism, porphyry copper and related deposits may be generated along these lineaments because the structures serve to focus the ascent of relatively evolved magmas and fluid distillates from deep-crustal magma reservoirs. However, lineament intersections can only focus such activity where a magma supply exists, and when lithospheric stress conditions permit. A comprehensive understanding of regional tectono-magmatic history is therefore required to interpret lineament maps in terms of their prospectivity for mineral exploration.


2018 ◽  
Vol 15 (16) ◽  
pp. 5203-5219 ◽  
Author(s):  
Guillaume Rousset ◽  
Florian De Boissieu ◽  
Christophe E. Menkes ◽  
Jérôme Lefèvre ◽  
Robert Frouin ◽  
...  

Abstract. Trichodesmium is the major nitrogen-fixing species in the western tropical South Pacific (WTSP) region, a hot spot of diazotrophy. Due to the paucity of in situ observations, remote-sensing methods for detecting Trichodesmium presence on a large scale have been investigated to assess the regional-to-global impact of this organism on primary production and carbon cycling. A number of algorithms have been developed to identify Trichodesmium surface blooms from space, but determining with confidence their accuracy has been difficult, chiefly because of the scarcity of sea-truth information at the time of satellite overpass. Here, we use a series of new cruises as well as airborne surveys over the WTSP to evaluate their ability to detect Trichodesmium surface blooms in the satellite imagery. The evaluation, performed on MODIS data at 250 m and 1 km resolution acquired over the region, shows limitations due to spatial resolution, clouds, and atmospheric correction. A new satellite-based algorithm is designed to alleviate some of these limitations, by exploiting optimally spectral features in the atmospherically corrected reflectance at 531, 645, 678, 748, and 869 nm. This algorithm outperforms former ones near clouds, limiting false positive detection and allowing regional-scale automation. Compared with observations, 80 % of the detected mats are within a 2 km range, demonstrating the good statistical skill of the new algorithm. Application to MODIS imagery acquired during the February-March 2015 OUTPACE campaign reveals the presence of surface blooms northwest and east of New Caledonia and near 20∘ S–172∘ W in qualitative agreement with measured nitrogen fixation rates. Improving Trichodesmium detection requires measuring ocean color at higher spectral and spatial (<250 m) resolution than MODIS, taking into account environment properties (e.g., wind, sea surface temperature), fluorescence, and spatial structure of filaments, and a better understanding of Trichodesmium dynamics, including aggregation processes to generate surface mats. Such sub-mesoscale aggregation processes for Trichodesmium are yet to be understood.


2016 ◽  
Author(s):  
Rogier Westerhoff ◽  
Paul White ◽  
Zara Rawlinson

Abstract. Large-scale models and satellite data are increasingly used to characterise groundwater and its recharge at the global scale. Although these models have the potential to fill in data gaps and solve trans-boundary issues, they are often neglected in smaller-scale studies, since data are often coarse or uncertain. Large-scale models and satellite data could play a more important role in smaller-scale (i.e., national or regional) studies, if they could be adjusted to fit that scale. In New Zealand, large-scale models and satellite data are not used for groundwater recharge estimation at the national scale, since regional councils (i.e., the water managers) have varying water policy and models are calibrated at the local scale. Also, some regions have many localised ground observations (but poor record coverage), whereas others are data-sparse. Therefore, estimation of recharge is inconsistent at the national scale. This paper presents an approach to apply large-scale, global, models and satellite data to estimate rainfall recharge at the national to regional scale across New Zealand. We present a model, NGRM, that is largely inspired by the global-scale WaterGAP recharge model, but is improved and adjusted using national data. The NGRM model uses MODIS-derived ET and vegetation satellite data, and the available nation-wide datasets on rainfall, elevation, soil and geology. A valuable addition to the recharge estimation is the model uncertainty estimate, based on variance, covariance and sensitivity of all input data components in the model environment. This research shows that, with minor model adjustments and use of improved input data, large-scale models and satellite data can be used to derive rainfall recharge estimates, including their uncertainty, at the smaller scale, i.e., national and regional scale of New Zealand. The estimated New Zealand recharge of the NGRM model compare well to most local and regional lysimeter data and recharge models. The NGRM is therefore assumed to be capable to fill in gaps in data-sparse areas and to create more consistency between datasets from different regions, i.e., to solve trans-boundary issues. This research also shows that smaller-scale recharge studies in New Zealand should include larger boundaries than only a (sub-)aquifer, and preferably the whole catchment. This research points out the need for improved collaboration on the international to national to regional levels to further merge large-scale (global) models to smaller (i.e., national or regional) scales. Future research topics should, collaboratively, focus on: improvement of rainfall-runoff and snowmelt methods; inclusion of river recharge; further improvement of input data (rainfall, evapotranspiration, soil and geology); and the impact of recharge uncertainty in mountainous and irrigated areas.


2010 ◽  
Vol 4 (4) ◽  
pp. 2233-2275 ◽  
Author(s):  
G. Levavasseur ◽  
M. Vrac ◽  
D. M. Roche ◽  
D. Paillard ◽  
A. Martin ◽  
...  

Abstract. We quantify the agreement between permafrost distributions from PMIP2 (Paleoclimate Modeling Intercomparison Project) climate models and permafrost data. We evaluate the ability of several climate models to represent permafrost and assess the inter-variability between them. Studying an heterogeneous variable such as permafrost implies to conduct analysis at a smaller spatial scale compared with climate models resolution. Our approach consists in applying statistical downscaling methods (SDMs) on large- or regional-scale atmospheric variables provided by climate models, leading to local permafrost modelling. Among the SDMs, we first choose a transfer function approach based on Generalized Additive Models (GAMs) to produce high-resolution climatology of surface air temperature (SAT). Then, we define permafrost distribution over Eurasia by SAT conditions. In a first validation step on present climate (CTRL period), GAM shows some limitations with non-systemic improvements in comparison with the large-scale fields. So, we develop an alternative method of statistical downscaling based on a stochastic generator approach through a Multinomial Logistic Regression (MLR), which directly models the probabilities of local permafrost indices. The obtained permafrost distributions appear in a better agreement with data. In both cases, the provided local information reduces the inter-variability between climate models. Nevertheless, this also proves that a simple relationship between permafrost and the SAT only is not always sufficient to represent local permafrost. Finally, we apply each method on a very different climate, the Last Glacial Maximum (LGM) time period, in order to quantify the ability of climate models to represent LGM permafrost. Our SDMs do not significantly improve permafrost distribution and do not reduce the inter-variability between climate models, at this period. We show that LGM permafrost distribution from climate models strongly depends on large-scale SAT. The differences with LGM data, larger than in the CTRL period, reduce the contribution of downscaling and depend on several factors deserving further studies.


1997 ◽  
Vol 40 (2) ◽  
Author(s):  
M. Popeskov

There has recently been much discussion of large-scale interactions of fault zones and the influence of large-scale processes in the preparation and triggering of earthquakes. As a consequence, an official recommendation was issued to set up observational networks at regional scale. In this context, the existing network of standard geomagnetic observatories might play a more important role in future tectonomagnetic studies. The data from standard geomagnetic observatories are basically not appropriate for the detection of small-magnitude and, in most cases, spatially very localized geomagnetic field changes. However, their advantage is a continuity in a long-time period which enables the study of regional tectonomagnetic features and long-term precursory changes. As the first step of a more extensive study aimed at examining the features of observatory data for this purpose, a three-year data set from five European observatories has been analyzed. Some common statistical procedures have been applied along with a simple difference technique and multivariate linear regression to define local geomagnetic field changes. The distribution of M ³ 4.5 earthquakes in Europe, in a corresponding period, was also taken into account. No pronounced field variation, related in time to the M 5.7 Timisoara (Romania) earthquake on July 12, 1991, was found at Grocka observatory at about 80 km from the earthquake epicenter. However, an offset in level of the differences in declination which include Grocka observatory, not seen in the case of differences between other observatories, could be associated with a possible regional effect of the M 4.8 earthquake which occurred in September 1991 at about 70 km SE from Grocka.


2017 ◽  
Author(s):  
Cherry May R. Mateo ◽  
Dai Yamazaki ◽  
Hyungjun Kim ◽  
Adisorn Champathong ◽  
Jai Vaze ◽  
...  

Abstract. Global-scale River Models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representation of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash–Sutcliffe Efficiency coefficient decreased by more than 35 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions in finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings are universal and can be extended to global-scale simulations. These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.


Author(s):  
Florian Brückner ◽  
Rebecca Bahls ◽  
Mohammad Alqadi ◽  
Falk Lindenmaier ◽  
Ibraheem Hamdan ◽  
...  

AbstractIn 2017, a comprehensive review of groundwater resources in Jordan was carried out for the first time since 1995. The change in groundwater levels between 1995 and 2017 was found to be dramatic: large declines have been recorded all over the country, reaching more than 100 m in some areas. The most affected areas are those with large-scale groundwater-irrigated agriculture, but areas that are only used for public water supply are also affected. The decrease of groundwater levels and saturated thickness poses a growing threat for drinking water supply and the demand has to be met from increasingly deeper and more remote sources, causing higher costs for drilling and extraction. Groundwater-level contour lines show that groundwater flow direction has completely reversed in some parts of the main aquifer. Consequently, previously established conceptual models, such as the concept of 12 “groundwater basins” often used in Jordan should be revised or replaced. Additionally, hydraulic conditions are changing from confined to unconfined; this is most likely a major driver for geogenic pollution with heavy metals through leakage from the overlying bituminous aquitard. Three exemplary case studies are presented to illustrate and discuss the main causes for the decline of the water tables (agriculture and population growth) and to show how the results of this assessment can be used on a regional scale.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259004
Author(s):  
Facheng Ye ◽  
G. R. Shi ◽  
Maria Aleksandra Bitner

The global distribution patterns of 14918 geo-referenced occurrences from 394 living brachiopod species were mapped in 5° grid cells, which enabled the visualization and delineation of distinct bioregions and biodiversity hotspots. Further investigation using cluster and network analyses allowed us to propose the first systematically and quantitatively recognized global bioregionalization framework for living brachiopods, consisting of five bioregions and thirteen bioprovinces. No single environmental or ecological variable is accountable for the newly proposed global bioregionalization patterns of living brachiopods. Instead, the combined effects of large-scale ocean gyres, climatic zonation as well as some geohistorical factors (e.g., formation of land bridges and geological recent closure of ancient seaways) are considered as the main drivers at the global scale. At the regional scale, however, the faunal composition, diversity and biogeographical differentiation appear to be mainly controlled by seawater temperature variation, regional ocean currents and coastal upwelling systems.


2008 ◽  
Vol 5 (5) ◽  
pp. 4161-4207 ◽  
Author(s):  
H. W. Ter Maat ◽  
R. W. A. Hutjes

Abstract. A large scale mismatch exists between our understanding and quantification of ecosystem atmosphere exchange of carbon dioxide at local scale and continental scales. This paper will focus on the carbon exchange on the regional scale to address the following question: What are the main controlling factors determining atmospheric carbon dioxide content at a regional scale? We use the Regional Atmospheric Modelling System (RAMS), coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C), and including also sub models for urban and marine fluxes, which in principle include the main controlling mechanisms and capture the relevant dynamics of the system. To validate the model, observations are used which were taken during an intensive observational campaign in the central Netherlands in summer 2002. These included flux-site observations, vertical profiles at tall towers and spatial fluxes of various variables taken by aircraft. The coupled regional model (RAMS-SWAPS-C) generally does a good job in simulating results close to reality. The validation of the model demonstrates that surface fluxes of heat, water and CO2 are reasonably well simulated. The comparison against aircraft data shows that the regional meteorology is captured by the model. Comparing spatially explicit simulated and observed fluxes we conclude that in general simulated latent heat fluxes are underestimated by the model to the observations which exhibit large standard deviation for all flights. Sensitivity experiments demonstrated the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same test also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.


Sign in / Sign up

Export Citation Format

Share Document