scholarly journals The life cycle in late Paleozoic eryopid temnospondyls: developmental variation, plasticity and phylogeny

Fossil Record ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 295-319
Author(s):  
Rainer R. Schoch

Abstract. Eryopid temnospondyls were large apex predators in Carboniferous and Permian stream and lake habitats. The eryopid life cycle is exemplified by Onchiodon labyrinthicus from Niederhäslich (Saxony, Germany), which is represented by numerous size classes from small larvae to heavily ossified adults. Morphometric and principal component analyses provide new insights into ontogenetic changes in O. labyrinthicus, and comparison with adults of other eryopids documents phylogenetic patterns in the occupation of morphospace. Compared with small specimens of Sclerocephalus spp., immature O. labyrinthicus occupies a neighboring but much larger space, corresponding to a broader range of variation. Adults of Actinodon frossardi map with some juveniles of O. labyrinthicus, whereas other juveniles of the latter lie close to adults of O. thuringiensis, Glaukerpeton avinoffi and Osteophorus roemeri. Morphospace occupation of adult eryopids is partly consistent with cladistic tree topology, which gives the following branching pattern: Actinodon frossardi forms the basalmost eryopid, followed by Osteophorus roemeri, Glaukerpeton avinoffi and the genus Onchiodon (O. labyrinthicus + O. thuringiensis); then Clamorosaurus nocturnus; and finally the monophyletic genus Eryops. The presumably juvenile skull of Eryops anatinus falls well outside the domains of both adult eryopids and immature O. labyrinthicus, showing a unique combination of juvenile and adult features. Instead, Onchiodon langenhani and the Ruprechtice specimens referred to O. labyrinthicus map within the domain of immature O. labyrinthicus. Raised levels of variation in O. labyrinthicus coincide with evidence of a stressed habitat, in which limiting factors were fluctuating salinity, absence of fishes, enhanced competition and seasonal algal blooms. The documented broad variation was possibly caused by developmental plasticity responding to fluctuations in lake hydrology and nutrients in this small, short-lived water body.

Author(s):  
John Dupré

This sketch of an account of human nature begins with the claim that we should see humans as a kind of process, a life cycle, rather than as a kind of substance or thing. A particular advantage of such a process perspective is that it readily accommodates the developmental plasticity that has been an increasingly important concept in recent biological theory. Human behaviour, on this account, should be understood as providing adaptive and flexible responses to an unpredictable environment. It is, therefore, generally misguided to provide a standard account of human nature in terms of behaviour or behavioural dispositions. If there is such a thing as human nature, it is a uniquely refined propensity for novel and unpredictable behaviour.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Victor Eduardo Cury Silva ◽  
Davide Franco ◽  
Alessandra Larissa Fonseca ◽  
Maria Luiza Fontes ◽  
Alejandro Rodolfo Donnangelo

ABSTRACT High levels of eutrophication in coastal lagoons due to human activity have been documented worldwide. Among the main impacts observed are anoxia, hypoxia, toxic algal blooms, fish kills, loss of biodiversity and loss of bathing. This study aimed to evaluate the evolution of the trophic state of Lagoa da Conceição, a subtropical lagoon located in an urbanized watershed on the island of Santa Catarina - Brazil. Spatio temporal patterns of stratification and eutrophication were investigated to understand the main biochemical changes over time. The water quality data were obtained from field campaigns supplemented with literature of the last 15 years. The vertical structure of the water column and the trophic state were evaluated by the stratification index and the TRIX index, respectively. Analyses of variance were performed in order to identify possible temporal variations in vertical stratification and trophic level. Eutrophication effects on biogeochemical cycles were verified through a multi-dimensional cluster analysis (MDS) and correlations between variables related to physical, chemical and biological processes were verified by principal component analysis (PCA). The results showed that the water column is homogeneous in all regions except in the central region of the lagoon, and the highest ammonia concentrations and lowest dissolved oxygen concentrations with periods of anoxia are observed in bottom waters. The study looked at the high trophic level of the lagoon and its inability to process the biogeochemical changes imposed by urban development.


2022 ◽  
Vol 147 (1) ◽  
pp. 1-6
Author(s):  
Chunxian Chen ◽  
William R. Okie

Peach (Prunus persica) cultivars maintained at the U.S. Department of Agriculture program at Byron, GA, have never been characterized with any molecular markers. In this study, 20 microsatellite markers were used to genotype 112 cultivars and the data were analyzed to discern their population structure and phylogenetic relationships. STRUCTURE simulations revealed four K clusters and broad genetic admixture among the cultivars. Principal coordinate analysis (PCoA) showed the cultivar groups from western, northeastern, and southeastern U.S. states were adjacent to each other except cultivars from Michigan (close to most southeastern state groups) and Florida (most distant from the other groups). Principal component analysis (PCA) showed that these cultivars had no obvious PCA partitioning boundaries. The intertwined distribution in both PCoA and PCA partitions suggested many of them were genetically closely related to each other largely because most shared same ancestral parentages. Most pairwise distance means within and between the cultivar groups were relatively low, suggesting close phylogenetic relations among those cultivars, as were demonstrated in the phylogenetic tree. Limiting factors and perspectives relevant to peach breeding are discussed.


2021 ◽  
Author(s):  
Katie A McLaughlin ◽  
Laurel Joy Gabard-Durnam

Despite the clear importance of a developmental perspective for understanding the emergence of psychopathology across the life-course, such a perspective has yet to be integrated into the RDoC model. In this paper, we articulate a framework that incorporates developmentally-specific learning mechanisms that reflect experience-driven plasticity as additional units of analysis in the existing RDoC matrix. These include both experience-expectant learning mechanisms that occur during sensitive periods of development and experience-dependent learning mechanisms that may exhibit substantial variation across development. Incorporating these learning mechanisms allows for clear integration not only of development but also environmental experience into the RDoC model. We demonstrate how individual differences in environmental experiences—such as early-life adversity—can be leveraged to identify experience-driven plasticity patterns across development and apply this framework to consider how environmental experience shapes key biobehavioral processes that comprise the RDoC model. This framework provides a structure for understanding how affective, cognitive, social, and neurobiological processes are shaped by experience across development and ultimately contribute to the emergence of psychopathology. We demonstrate how incorporating an experience-driven plasticity framework is critical for understanding the development of many processes subsumed within the RDoC model, which will contribute to greater understanding of developmental variation in the etiology of psychopathology and can be leveraged to identify potential windows of heightened developmental plasticity when clinical interventions might be maximally efficacious.


Science ◽  
2020 ◽  
Vol 369 (6499) ◽  
pp. 65-70 ◽  
Author(s):  
Flemming T. Dahlke ◽  
Sylke Wohlrab ◽  
Martin Butzin ◽  
Hans-Otto Pörtner

Species’ vulnerability to climate change depends on the most temperature-sensitive life stages, but for major animal groups such as fish, life cycle bottlenecks are often not clearly defined. We used observational, experimental, and phylogenetic data to assess stage-specific thermal tolerance metrics for 694 marine and freshwater fish species from all climate zones. Our analysis shows that spawning adults and embryos consistently have narrower tolerance ranges than larvae and nonreproductive adults and are most vulnerable to climate warming. The sequence of stage-specific thermal tolerance corresponds with the oxygen-limitation hypothesis, suggesting a mechanistic link between ontogenetic changes in cardiorespiratory (aerobic) capacity and tolerance to temperature extremes. A logarithmic inverse correlation between the temperature dependence of physiological rates (development and oxygen consumption) and thermal tolerance range is proposed to reflect a fundamental, energetic trade-off in thermal adaptation. Scenario-based climate projections considering the most critical life stages (spawners and embryos) clearly identify the temperature requirements for reproduction as a critical bottleneck in the life cycle of fish. By 2100, depending on the Shared Socioeconomic Pathway (SSP) scenario followed, the percentages of species potentially affected by water temperatures exceeding their tolerance limit for reproduction range from ~10% (SSP 1–1.9) to ~60% (SSP 5–8.5). Efforts to meet ambitious climate targets (SSP 1–1.9) could therefore benefit many fish species and people who depend on healthy fish stocks.


2018 ◽  
Vol 14 (6) ◽  
pp. 20180199 ◽  
Author(s):  
France Charest ◽  
Zerina Johanson ◽  
Richard Cloutier

Within jawed vertebrates, pelvic appendages have been modified or lost repeatedly, including in the most phylogenetically basal, extinct, antiarch placoderms. One Early Devonian basal antiarch, Parayunnanolepis , possessed pelvic girdles, suggesting the presence of pelvic appendages at the origin of jawed vertebrates; their absence in more derived antiarchs implies a secondary loss. Recently, paired female genital plates were identified in the Late Devonian antiarch, Bothriolepis canadensis , in the position of pelvic girdles in other placoderms. We studied these putative genital plates along an ontogenetic series of B. canadensis ; ontogenetic changes in their morphology, histology and elemental composition suggest they represent endoskeletal pelvic girdles composed of perichondral and endochondral bone. We suggest that pelvic fins of derived antiarchs were lost, while pelvic girdles were retained, but reduced, relative to Parayunnanolepis . This indicates developmental plasticity and evolutionary lability in pelvic appendages, shortly after these elements evolved at the origin of jawed vertebrates.


2020 ◽  
Vol 20 (5) ◽  
pp. 1950-1964
Author(s):  
Xiaojun Li ◽  
Yanping Zhao ◽  
Guoxiang Wang ◽  
Ruiming Han ◽  
Xinyi Dang ◽  
...  

Abstract The spatial distribution of the sediment nitrogen in ten typical estuaries of Lake Taihu was determined. A simple quantitative estimation model and principal component analysis (PCA) method were applied to find the source and major factors of estuarine sediment nitrogen loading. The average concentrations of total nitrogen (TN), organic nitrogen (Org-N), ammonium nitrogen and nitrate-nitrogen in the sediments of the ten estuaries were 1315.5, 1220.1, 82.53 and 6.45 mg/kg, with the organic fraction dominating. Results showed a significant difference for the TN concentration in sediments of different estuaries, which was mainly caused by geographical location, land use type and vegetation restoration measures. An important result was that sediment nitrogen in 80% of the estuaries was mainly originated from autochthonous algae and presettled organic matter, although there has been continuous pollution input from inflow rivers. The source estimation results found that the autochthonous aquaculture excretion, algae and hydrophyte debris and buried biodetritus accounted for 58.9% of the total nitrogen loading, which dominated the nitrogen sources compared with the pollution input. In addition, the PCA method was used to find that phosphorus loading and redox conditions were the major limiting factors affecting the distribution of inorganic and , respectively.


2009 ◽  
Vol 4 (5-6) ◽  
pp. 299-319 ◽  
Author(s):  
R.A.A. Noble ◽  
B. Bredeweg ◽  
F. Linnebank ◽  
P. Salles ◽  
I.G. Cowx

Sign in / Sign up

Export Citation Format

Share Document