scholarly journals Introduction to teaching science with three-dimensional images of dinosaur footprints from Cristo Rey, New Mexico

2022 ◽  
Vol 5 (1) ◽  
pp. 1-9
Author(s):  
Valeria V. Martinez ◽  
Laura F. Serpa

Abstract. In this paper we discuss the use of three-dimensional (3-D) imagery and virtual field trips to teach pre-university and non-major university geoscience courses. In particular, 3-D PDF (Portable Document Format) files can be used to either prepare students for or completely replace a field trip when logistical problems make the actual trip too difficult to be effective or when some students need an alternative accommodation. Three-dimensional images can replace or supplement classroom activities, such as the identification of rocks and minerals from hand samples or the identification of geologic structures from 2-D photographs and limited field observations. Students can also become involved in data collection and processing to further their understanding of photogrammetry and visualization. The use of 3-D imagery can make additional time available to instructors to cover more advanced topics and teach students more about the role of science in geologic research. We use an example from Cristo Rey, New Mexico, where dinosaur footprints and tracks are present but difficult to see in many cases, and they are often in places that are hard to access for many people. At this site, approximately 10 000 photographs were collected and processed as 3-D images to show one approximately 72 m2 area of known footprints. However, we also conducted some very simple digital manipulations of the images that allowed us to identify new footprints and tracks that were not apparent when viewed in the field. The photographs and 3-D images have been donated to the Insights El Paso Science Center (denoted Insights Museum herein) that owns the fossil site, and they are now being used to develop educational materials and lessons for the nearby communities.

2021 ◽  
Author(s):  
Valeria V. Martinez ◽  
Laura F. Serpa

Abstract. In this paper we discuss the use of three-dimensional (3-D) imagery and virtual field trips to teach lower level (i.e. K-14 level) geoscience courses. In particular, 3-D pdfs can be used to either prepare students for, or completely replace, a field trip when logistical problems make the actual trip too difficult to be effective or when some students need an alternative accommodation. Three dimensional images can replace or supplement classroom activities, such as the identification of rocks and minerals from hand samples or the identification of geologic structures from 2-D photographs and limited field observations. Students can also become involved in data collection and processing to further their understanding of photogrammetry and visualization. The use of 3-D imagery can make additional time available to instructors to cover more advanced topics and teach students more about the role of science in geologic research. We use an example from Cristo Rey, New Mexico, where dinosaur footprints and tracks are present but difficult to see in many cases and often in places that are hard to access for many people. At this site, approximately 10,000 photographs were collected and processed as 3-D images to show one approximately 72 m2 area of known footprints. However, we also conducted some very simple digital manipulations of the images that allowed us to identify new footprints and tracks that were not apparent when viewed in the field. The photographs and 3-D images have been donated to the Insights museum that owns the fossil site and they are now being used to develop educational materials and lessons for the nearby communities.


2011 ◽  
Vol 89 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Jeremy A. Cody ◽  
Paul A. Craig ◽  
Adam D. Loudermilk ◽  
Paul M. Yacci ◽  
Sarah L. Frisco ◽  
...  

Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 290
Author(s):  
Koffi Djaman ◽  
Curtis Owen ◽  
Margaret M. West ◽  
Samuel Allen ◽  
Komlan Koudahe ◽  
...  

The highly variable weather under changing climate conditions affects the establishment and the cutoff of crop growing season and exposes crops to failure if producers choose non-adapted relative maturity that matches the characteristics of the crop growing season. This study aimed to determine the relationship between maize hybrid relative maturity and the grain yield and determine the relative maturity range that will sustain maize production in northwest New Mexico (NM). Different relative maturity maize hybrids were grown at the Agricultural Science Center at Farmington ((Latitude 36.69° North, Longitude 108.31° West, elevation 1720 m) from 2003 to 2019 under sprinkler irrigation. A total of 343 hybrids were grouped as early and full season hybrids according to their relative maturity that ranged from 93 to 119 and 64 hybrids with unknown relative maturity. The crops were grown under optimal management condition with no stress of any kind. The results showed non-significant increase in grain yield in early season hybrids and non-significant decrease in grain yield with relative maturity in full season hybrids. The relative maturity range of 100–110 obtained reasonable high grain yields and could be considered under the northwestern New Mexico climatic conditions. However, more research should target the evaluation of different planting date coupled with plant population density to determine the planting window for the early season and full season hybrids for the production optimization and sustainability.


Sign in / Sign up

Export Citation Format

Share Document