Geoscience Communication
Latest Publications


TOTAL DOCUMENTS

85
(FIVE YEARS 81)

H-INDEX

3
(FIVE YEARS 2)

Published By Copernicus Gmbh

2569-7110

2022 ◽  
Vol 5 (1) ◽  
pp. 11-15
Author(s):  
John K. Hillier ◽  
Chris Unsworth ◽  
Luke De Clerk ◽  
Sergey Savel'ev

Abstract. Insights from a geoscience communication activity, verified using preliminary investigations with an artificial neural network, illustrate that observation of humans' abilities can help design an effective artificial intelligence or “AI”. Even given only one set of “training” examples, survey participants could visually recognize which flow conditions created bedforms (e.g. sand dunes and riverbed ripples) from their shapes, but an interpreter's geoscience expertise does not help. Together, these observations were interpreted as indicating that a machine learning algorithm might be trained successfully from limited data, particularly if it is “helped” by pre-processing bedforms into a simple shape familiar from childhood play.


2022 ◽  
Vol 5 (1) ◽  
pp. 1-9
Author(s):  
Valeria V. Martinez ◽  
Laura F. Serpa

Abstract. In this paper we discuss the use of three-dimensional (3-D) imagery and virtual field trips to teach pre-university and non-major university geoscience courses. In particular, 3-D PDF (Portable Document Format) files can be used to either prepare students for or completely replace a field trip when logistical problems make the actual trip too difficult to be effective or when some students need an alternative accommodation. Three-dimensional images can replace or supplement classroom activities, such as the identification of rocks and minerals from hand samples or the identification of geologic structures from 2-D photographs and limited field observations. Students can also become involved in data collection and processing to further their understanding of photogrammetry and visualization. The use of 3-D imagery can make additional time available to instructors to cover more advanced topics and teach students more about the role of science in geologic research. We use an example from Cristo Rey, New Mexico, where dinosaur footprints and tracks are present but difficult to see in many cases, and they are often in places that are hard to access for many people. At this site, approximately 10 000 photographs were collected and processed as 3-D images to show one approximately 72 m2 area of known footprints. However, we also conducted some very simple digital manipulations of the images that allowed us to identify new footprints and tracks that were not apparent when viewed in the field. The photographs and 3-D images have been donated to the Insights El Paso Science Center (denoted Insights Museum herein) that owns the fossil site, and they are now being used to develop educational materials and lessons for the nearby communities.


2021 ◽  
Vol 4 (4) ◽  
pp. 527-554
Author(s):  
Pablo Borges de Amorim ◽  
Pedro Luiz Borges Chaffe

Abstract. Climate change is one of the major challenges of our society; thus educational resources on climate risk and adaptation are needed. In this case study, we present a short-duration face-to-face training for water professionals about the Intergovernmental Panel on Climate Change (IPCC)'s climate risk framework. The training uses problem-based learning (PBL) pedagogy, and its suitability and benefits are evaluated with qualitative observation and self-assessment of knowledge of tertiary students and practitioners from five independent groups in Brazil. We find that the application of a mapping exercise using the IPCC's climate risk framework supports learning about climate risk, as well as data interpretation, creativity, teamwork, communication, and critical thinking by the participants. This work merges the IPCC's climate risk framework and PBL for climate risk training. The proposed training enables the teaching of climate risk in stand-alone courses and professional development training in areas where climate is an embedded component.


2021 ◽  
Vol 4 (4) ◽  
pp. 517-525
Author(s):  
Kathryn Lambrecht ◽  
Benjamin J. Hatchett ◽  
Kristin VanderMolen ◽  
Bianca Feldkircher

Abstract. Effective communication of heat risk to public audiences is critical for promoting behavioral changes that reduce susceptibility to heat-related illness. The U.S. National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) provides heat-related information to the public using social media platforms such as Facebook. We applied a novel rhetorical framework to evaluate 5 years (2015–2019) of public responses to heat-related Facebook posts from the NWS office in Phoenix (Arizona) to identify “commonplaces” or community norms, beliefs, and values that may present challenges to the effectiveness of heat risk communication. Phoenix is in one of the hottest regions in North America and is the 10th-largest metropolitan area in the U.S. We found the following two key commonplaces: (1) the normalization of heat and (2) heat as a marker of community identity. These commonplaces imply that local audiences may be resistant to behavioral change, but they can also be harnessed in an effort to promote protective action. We also found that public responses to NWS posts declined over the heat season, further suggesting the normalization of heat and highlighting the need to maintain engagement. This work provides a readily generalizable framework for other messengers of high-impact weather events to improve the effectiveness of their communication with receiver audiences.


2021 ◽  
Vol 4 (4) ◽  
pp. 493-506
Author(s):  
John K. Hillier ◽  
Katharine E. Welsh ◽  
Mathew Stiller-Reeve ◽  
Rebecca K. Priestley ◽  
Heidi A. Roop ◽  
...  

Abstract. If you are a geoscientist doing work to achieve impact outside academia or engaging different audiences with the geosciences, are you planning to make this publishable? If so, then plan. Such investigations into how people (academics, practitioners, other publics) respond to geoscience can use pragmatic, simple research methodologies accessible to the non-specialist or be more complex. To employ a medical analogy, first aid is useful and the best option in some scenarios, but calling a medic (i.e. a collaborator with experience of geoscience communication or relevant research methods) provides the contextual knowledge to identify a condition and opens up a diverse, more powerful range of treatment options. Here, we expand upon the brief advice in the first editorial of Geoscience Communication (Illingworth et al., 2018), illustrating what constitutes robust and publishable work in this context, elucidating its key elements. Our aim is to help geoscience communicators plan a route to publication and to illustrate how good engagement work that is already being done might be developed into publishable research.


2021 ◽  
Vol 4 (4) ◽  
pp. 475-492
Author(s):  
Erika Rader ◽  
Renee Love ◽  
Darryl Reano ◽  
Tonia A. Dousay ◽  
Natasha Wingerter

Abstract. To mimic the 3D geospatial components of geologic mapping usually spotlighted by field camp, we developed a virtual course based in the sandbox video game Minecraft. Paired with audio/video conferencing and real data, students practiced measuring strike and dip, orienteering with a compass, matching landscape features with topographic maps, and tracing geologic contacts within the team structure typically employed in field camp. Open-source programs and tutorials freely available online assisted with constructing the Minecraft worlds. Assignments were aligned to the nine learning outcomes established for geology field camps by the National Association of Geology Teachers (NAGT). A pre-survey and post-survey quantified students' learning of the subject matter as well as perceptions towards Minecraft and online learning. We also held feedback sessions and conducted in-class, live observations to classify students' reactions and experiences during virtual activities. Overwhelmingly, students indicated they would have preferred an in-person field camp, yet they considered the Minecraft assignments exciting, important, interesting, and valuable. Regardless of perceived barriers, scores on subject matter questions increased from the pre- to the post-survey. Finally, observations illustrated how students' experiences in a virtual field camp recreated comparable components that students experience during an in-person field camp (e.g., students discussing career pathways, geological skills, and fostering interpersonal relationships). Because this virtual course achieved the curricular goals as well as the non-curricular goals and was relatively easy to construct, we recommend the usage of Minecraft for virtual geology courses in the future.


2021 ◽  
Vol 4 (4) ◽  
pp. 461-474
Author(s):  
Madeline S. Marshall ◽  
Melinda C. Higley

Abstract. Field experiences are a critical component of undergraduate geoscience education; however, traditional onsite field experiences are not always practical due to accessibility, and the popularity of alternative modes of learning in higher education is increasing. One way to support student access to field experiences is through virtual field trips, implemented either independently or in conjunction with in-person field trips. We created a virtual field trip (VFT) to Grand Ledge, a regionally important suite of sedimentary outcrops in central lower Michigan, USA. This VFT undertakes all stages of a field project, from question development and detailed observation through data collection to interpretation. The VFT was implemented in undergraduate sedimentation and stratigraphy courses at two different liberal arts institutions, with one version of the VFT conducted in-person and the other online. The VFT was presented from a locally hosted website and distributed through an online learning platform. Students completed a series of activities using field data in the form of outcrop photos, virtual 3D models of outcrops and hand samples, and photos of thin sections. Student products included annotated field notes, a stratigraphic column, a collaborative stratigraphic correlation, and a final written reflection. VFT assessment demonstrated that students successfully achieved the inquiry-oriented student learning outcomes, and student reflection responses provide anecdotal evidence that the field experience was comparable to field geology onsite. This VFT is an example of successful student learning in an upper-level sedimentation and stratigraphy course via virtual field experience with an emphasis on local geology.


2021 ◽  
Vol 4 (4) ◽  
pp. 453-460
Author(s):  
Andrea Pozzer

Abstract. We investigated the number of references per page for different European Geosciences Union journals, which share the same text formatting. Although the journals formally all focus on geoscience, different disciplines are covered, from ocean science and biogeosciences to the technical description of numerical model development. In this study, we show that the number of references per page is remarkably constant across these journals. In addition, this value has remained constant in the last decade, despite the consistent increase in the number of pages and in the number of references in almost all journals considered. Independently of the quality of the references used in an article, we show that for the EGU (European Geosciences Union) journals the average number of references per page is 3.82 (1.87–6.18 at 90 % confidence level). This reveals that there is a consensus regarding optimum reference density, which depends on the journal's layout and not on the journal's discipline.


2021 ◽  
Vol 4 (3) ◽  
pp. 437-451
Author(s):  
Hazel Gibson ◽  
Sam Illingworth ◽  
Susanne Buiter

Abstract. In the early months of 2020, as the novel coronavirus (COVID-19) swept across the globe, millions of people were required to make drastic changes to their lives to help contain the impact of the virus. Among those changes, scientific conferences of every type and size were forced to cancel or postpone in order to protect public health. Included in these was the European Geosciences Union (EGU) 2020 General Assembly, an annual conference for Earth, planetary, and space scientists, scheduled to be held in Vienna, Austria, in May 2020. After a 6-week period of changing the format to an online alternative, attendees of the newly designed EGU20: Sharing Geoscience Online took part in the first geoscience conference of its size to go fully online. This paper explores the feedback provided by participants following this experimental conference and identifies four key themes that emerged from an analysis of the following questions: what did attendees miss from a regular meeting, and to what extent did going online impact the event itself, both in terms of challenges and opportunities? The themes identified are “connecting”, “engagement”, “environment”, and “accessibility”. These themes include concepts relating to discussions of the value of informal connections and spontaneous scientific discovery during conferences, the necessity of considering the environmental cost of in-person meetings, and the opportunities for widening participation in science by investing in accessibility. The responses in these themes cover the spectrum of experiences of participants, from positive to negative, and raise important questions about what conference providers of the future will need to do to meet the needs of the scientific community in the years following this coronavirus outbreak.


2021 ◽  
Vol 4 (3) ◽  
pp. 421-435
Author(s):  
Kevin H. Mahan ◽  
Michael G. Frothingham ◽  
Ellen Alexander

Abstract. The COVID-19 pandemic hindered the ability to conduct field geology courses in a hands-on and boots-on traditional manner. In response, we designed a multi-part virtual field module that encompasses many of the basic requirements of an advanced field exercise, including designing a mapping strategy, collecting and processing field observations, synthesizing data from field-based and laboratory analyses, and communicating the results to a broad audience. For the mapping exercise, which is set in deformed Proterozoic crystalline basement exposed in the Front Range of Colorado (USA), student groups make daily navigational decisions and choose stations based on topographic maps, Google Earth satellite imagery, and iterative geological reasoning. For each station, students receive outcrop descriptions, measurements, and photographs from which they input field data and create geologic maps using StraboSpot. Building on the mapping exercise, student groups then choose from six supplements, including advanced field structure, microstructure, metamorphic petrology, and several geochronological datasets. Because scientific projects rarely end when the mapping is complete, the students are challenged to see how samples and analytical data may commonly be collected and integrated with field observations to produce a more holistic understanding of the geological history of the field area. While a virtual course cannot replace the actual field experience, modules like the one shared here can successfully address, or even improve on, some of the key learning objectives that are common to field-based capstone experiences while also fostering a more accessible and inclusive learning environment for all students.


Sign in / Sign up

Export Citation Format

Share Document